qwerrwe / src /axolotl /cli /__init__.py
winglian's picture
refactor scripts/finetune.py into new cli modules (#550)
861ceca unverified
raw
history blame
7.93 kB
"""Prepare and train a model on a dataset. Can also infer from a model or merge lora"""
import importlib
import logging
import os
import random
import sys
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
import torch
import yaml
# add src to the pythonpath so we don't need to pip install this
from accelerate.commands.config import config_args
from art import text2art
from transformers import GenerationConfig, TextStreamer
from axolotl.common.cli import TrainerCliArgs, load_model_and_tokenizer
from axolotl.logging_config import configure_logging
from axolotl.train import TrainDatasetMeta
from axolotl.utils.config import normalize_config, validate_config
from axolotl.utils.data import prepare_dataset
from axolotl.utils.dict import DictDefault
from axolotl.utils.distributed import is_main_process
from axolotl.utils.models import load_tokenizer
from axolotl.utils.tokenization import check_dataset_labels
from axolotl.utils.wandb_ import setup_wandb_env_vars
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
src_dir = os.path.join(project_root, "src")
sys.path.insert(0, src_dir)
configure_logging()
LOG = logging.getLogger("axolotl.scripts")
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
def print_axolotl_text_art(suffix=None):
font = "nancyj"
ascii_text = " axolotl"
if suffix:
ascii_text += f" x {suffix}"
ascii_art = text2art(" axolotl", font=font)
if is_main_process():
print(ascii_art)
def get_multi_line_input() -> Optional[str]:
print("Give me an instruction (Ctrl + D to finish): ")
instruction = ""
for line in sys.stdin:
instruction += line # pylint: disable=consider-using-join
# instruction = pathlib.Path("/proc/self/fd/0").read_text()
return instruction
def do_merge_lora(
*,
cfg: DictDefault,
cli_args: TrainerCliArgs,
):
model, tokenizer = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args)
safe_serialization = cfg.save_safetensors is True
LOG.info("running merge of LoRA with base model")
model = model.merge_and_unload()
model.to(dtype=torch.float16)
if cfg.local_rank == 0:
LOG.info("saving merged model")
model.save_pretrained(
str(Path(cfg.output_dir) / "merged"),
safe_serialization=safe_serialization,
)
tokenizer.save_pretrained(str(Path(cfg.output_dir) / "merged"))
def do_inference(
*,
cfg: DictDefault,
cli_args: TrainerCliArgs,
):
model, tokenizer = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args)
prompter = cli_args.prompter
default_tokens = {"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"}
for token, symbol in default_tokens.items():
# If the token isn't already specified in the config, add it
if not (cfg.special_tokens and token in cfg.special_tokens):
tokenizer.add_special_tokens({token: symbol})
prompter_module = None
if prompter:
prompter_module = getattr(
importlib.import_module("axolotl.prompters"), prompter
)
if cfg.landmark_attention:
from axolotl.monkeypatch.llama_landmark_attn import set_model_mem_id
set_model_mem_id(model, tokenizer)
model.set_mem_cache_args(
max_seq_len=255, mem_freq=50, top_k=5, max_cache_size=None
)
model = model.to(cfg.device)
while True:
print("=" * 80)
# support for multiline inputs
instruction = get_multi_line_input()
if not instruction:
return
if prompter_module:
prompt: str = next(
prompter_module().build_prompt(instruction=instruction.strip("\n"))
)
else:
prompt = instruction.strip()
batch = tokenizer(prompt, return_tensors="pt", add_special_tokens=True)
print("=" * 40)
model.eval()
with torch.no_grad():
generation_config = GenerationConfig(
repetition_penalty=1.1,
max_new_tokens=1024,
temperature=0.9,
top_p=0.95,
top_k=40,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
do_sample=True,
use_cache=True,
return_dict_in_generate=True,
output_attentions=False,
output_hidden_states=False,
output_scores=False,
)
streamer = TextStreamer(tokenizer)
generated = model.generate(
inputs=batch["input_ids"].to(cfg.device),
generation_config=generation_config,
streamer=streamer,
)
print("=" * 40)
print(tokenizer.decode(generated["sequences"].cpu().tolist()[0]))
def choose_config(path: Path):
yaml_files = list(path.glob("*.yml"))
if not yaml_files:
raise ValueError(
"No YAML config files found in the specified directory. Are you using a .yml extension?"
)
if len(yaml_files) == 1:
print(f"Using default YAML file '{yaml_files[0]}'")
return yaml_files[0]
print("Choose a YAML file:")
for idx, file in enumerate(yaml_files):
print(f"{idx + 1}. {file}")
chosen_file = None
while chosen_file is None:
try:
choice = int(input("Enter the number of your choice: "))
if 1 <= choice <= len(yaml_files):
chosen_file = yaml_files[choice - 1]
else:
print("Invalid choice. Please choose a number from the list.")
except ValueError:
print("Invalid input. Please enter a number.")
return chosen_file
def check_not_in(list1: List[str], list2: Union[Dict[str, Any], List[str]]) -> bool:
return not any(el in list2 for el in list1)
def load_cfg(config: Path = Path("examples/"), **kwargs):
if Path(config).is_dir():
config = choose_config(config)
# load the config from the yaml file
with open(config, encoding="utf-8") as file:
cfg: DictDefault = DictDefault(yaml.safe_load(file))
# if there are any options passed in the cli, if it is something that seems valid from the yaml,
# then overwrite the value
cfg_keys = cfg.keys()
for k, _ in kwargs.items():
# if not strict, allow writing to cfg even if it's not in the yml already
if k in cfg_keys or not cfg.strict:
# handle booleans
if isinstance(cfg[k], bool):
cfg[k] = bool(kwargs[k])
else:
cfg[k] = kwargs[k]
validate_config(cfg)
normalize_config(cfg)
setup_wandb_env_vars(cfg)
return cfg
def load_datasets(
*,
cfg: DictDefault,
cli_args: TrainerCliArgs,
) -> TrainDatasetMeta:
tokenizer = load_tokenizer(cfg)
train_dataset, eval_dataset, total_num_steps = prepare_dataset(cfg, tokenizer)
if cli_args.debug or cfg.debug:
LOG.info("check_dataset_labels...")
check_dataset_labels(
train_dataset.select(
[
random.randrange(0, len(train_dataset) - 1) # nosec
for _ in range(cli_args.debug_num_examples)
]
),
tokenizer,
num_examples=cli_args.debug_num_examples,
text_only=cli_args.debug_text_only,
)
return TrainDatasetMeta(
train_dataset=train_dataset,
eval_dataset=eval_dataset,
total_num_steps=total_num_steps,
)
def check_accelerate_default_config():
if Path(config_args.default_yaml_config_file).exists():
LOG.warning(
f"accelerate config file found at {config_args.default_yaml_config_file}. This can lead to unexpected errors"
)