Jamba (#1451)
Browse files* fixes for larger models
* add qlora example for deepspeed
* add readme for jamba
examples/jamba/README.md
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Jamba
|
2 |
+
|
3 |
+
qlora w/ deepspeed needs at least 2x GPUs and 35GiB VRAM per GPU
|
4 |
+
|
5 |
+
qlora single-gpu - training will start, but loss is off by an order of magnitude
|
examples/jamba/qlora_deepspeed.yaml
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model: ai21labs/Jamba-v0.1
|
2 |
+
trust_remote_code: true
|
3 |
+
|
4 |
+
load_in_8bit: false
|
5 |
+
load_in_4bit: true
|
6 |
+
strict: false
|
7 |
+
|
8 |
+
datasets:
|
9 |
+
- path: mhenrichsen/alpaca_2k_test
|
10 |
+
type: alpaca
|
11 |
+
dataset_prepared_path:
|
12 |
+
val_set_size: 0.0
|
13 |
+
output_dir: ./out
|
14 |
+
|
15 |
+
sequence_len: 4096
|
16 |
+
sample_packing: false
|
17 |
+
pad_to_sequence_len: false
|
18 |
+
eval_sample_packing: false
|
19 |
+
|
20 |
+
wandb_project:
|
21 |
+
wandb_entity:
|
22 |
+
wandb_watch:
|
23 |
+
wandb_name:
|
24 |
+
wandb_log_model:
|
25 |
+
|
26 |
+
adapter: qlora
|
27 |
+
lora_r: 8
|
28 |
+
lora_alpha: 16
|
29 |
+
lora_dropout: 0.05
|
30 |
+
lora_target_linear: true
|
31 |
+
|
32 |
+
low_cpu_mem_usage: true
|
33 |
+
gradient_accumulation_steps: 4
|
34 |
+
micro_batch_size: 1
|
35 |
+
num_epochs: 2
|
36 |
+
optimizer: paged_adamw_8bit
|
37 |
+
lr_scheduler: cosine
|
38 |
+
learning_rate: 0.00001
|
39 |
+
|
40 |
+
train_on_inputs: false
|
41 |
+
group_by_length: false
|
42 |
+
bf16: auto
|
43 |
+
fp16:
|
44 |
+
tf32: false
|
45 |
+
|
46 |
+
gradient_checkpointing: true
|
47 |
+
gradient_checkpointing_kwargs:
|
48 |
+
use_reentrant: false
|
49 |
+
early_stopping_patience:
|
50 |
+
resume_from_checkpoint:
|
51 |
+
local_rank:
|
52 |
+
logging_steps: 1
|
53 |
+
xformers_attention:
|
54 |
+
flash_attention: true
|
55 |
+
|
56 |
+
warmup_steps: 10
|
57 |
+
evals_per_epoch:
|
58 |
+
saves_per_epoch: 1
|
59 |
+
debug:
|
60 |
+
deepspeed: deepspeed_configs/zero2.json
|
61 |
+
weight_decay: 0.0
|
62 |
+
special_tokens:
|
src/axolotl/utils/config/models/input/v0_4_1/__init__.py
CHANGED
@@ -533,6 +533,7 @@ class AxolotlInputConfig(
|
|
533 |
Dict[Union[int, Literal["cpu", "disk"]], Union[int, str]]
|
534 |
] = None
|
535 |
gpu_memory_limit: Optional[Union[int, str]] = None
|
|
|
536 |
|
537 |
chat_template: Optional[ChatTemplate] = None
|
538 |
default_system_message: Optional[str] = None
|
|
|
533 |
Dict[Union[int, Literal["cpu", "disk"]], Union[int, str]]
|
534 |
] = None
|
535 |
gpu_memory_limit: Optional[Union[int, str]] = None
|
536 |
+
low_cpu_mem_usage: Optional[bool] = None
|
537 |
|
538 |
chat_template: Optional[ChatTemplate] = None
|
539 |
default_system_message: Optional[str] = None
|
src/axolotl/utils/models.py
CHANGED
@@ -402,7 +402,9 @@ def load_model(
|
|
402 |
from accelerate import infer_auto_device_map
|
403 |
|
404 |
with init_empty_weights():
|
405 |
-
model_canvas = AutoModelForCausalLM.from_config(
|
|
|
|
|
406 |
model_canvas.tie_weights()
|
407 |
device_map = infer_auto_device_map(
|
408 |
model_canvas,
|
@@ -502,6 +504,9 @@ def load_model(
|
|
502 |
model_kwargs["attn_implementation"] = "eager"
|
503 |
model_config._attn_implementation = "eager" # pylint: disable=protected-access
|
504 |
|
|
|
|
|
|
|
505 |
qlora_fsdp = cfg.fsdp and cfg.adapter == "qlora"
|
506 |
|
507 |
try:
|
|
|
402 |
from accelerate import infer_auto_device_map
|
403 |
|
404 |
with init_empty_weights():
|
405 |
+
model_canvas = AutoModelForCausalLM.from_config(
|
406 |
+
model_config, trust_remote_code=cfg.trust_remote_code or False
|
407 |
+
)
|
408 |
model_canvas.tie_weights()
|
409 |
device_map = infer_auto_device_map(
|
410 |
model_canvas,
|
|
|
504 |
model_kwargs["attn_implementation"] = "eager"
|
505 |
model_config._attn_implementation = "eager" # pylint: disable=protected-access
|
506 |
|
507 |
+
if cfg.low_cpu_mem_usage:
|
508 |
+
model_kwargs["low_cpu_mem_usage"] = True
|
509 |
+
|
510 |
qlora_fsdp = cfg.fsdp and cfg.adapter == "qlora"
|
511 |
|
512 |
try:
|
src/axolotl/utils/trainer.py
CHANGED
@@ -312,6 +312,8 @@ def setup_fsdp_envs(cfg):
|
|
312 |
os.environ["FSDP_USE_ORIG_PARAMS"] = "true"
|
313 |
if cfg.fsdp_config.fsdp_state_dict_type:
|
314 |
os.environ["FSDP_STATE_DICT_TYPE"] = cfg.fsdp_config.fsdp_state_dict_type
|
|
|
|
|
315 |
if cfg.fsdp_config.fsdp_transformer_layer_cls_to_wrap:
|
316 |
os.environ[
|
317 |
"FSDP_TRANSFORMER_CLS_TO_WRAP"
|
|
|
312 |
os.environ["FSDP_USE_ORIG_PARAMS"] = "true"
|
313 |
if cfg.fsdp_config.fsdp_state_dict_type:
|
314 |
os.environ["FSDP_STATE_DICT_TYPE"] = cfg.fsdp_config.fsdp_state_dict_type
|
315 |
+
if cfg.fsdp_config.fsdp_auto_wrap_policy:
|
316 |
+
os.environ["FSDP_AUTO_WRAP_POLICY"] = cfg.fsdp_config.fsdp_auto_wrap_policy
|
317 |
if cfg.fsdp_config.fsdp_transformer_layer_cls_to_wrap:
|
318 |
os.environ[
|
319 |
"FSDP_TRANSFORMER_CLS_TO_WRAP"
|