standardize attn hijack patches (#381)
Browse files* split sdp attn into its own patch
* sync xformers patch to follow shared format and be diffable
* update flash-attn patch for 70B/GQA and inference using helper from flash-attn tests
* speed up flash-attn inference
* fix patch to check position ids and don't use multipack for evals
* copy LlamaModel.forward and LlamaDecoderLayer.forward into monkeypatch
* update forwards so we only calculate cu_seqlens once
* enable eval dataloader using multipack again
* fix the patch to work properly and work with FSDP
---------
Co-authored-by: Wing Lian <wing.lian@gmail.com>
src/axolotl/monkeypatch/llama_attn_hijack_flash.py
CHANGED
@@ -2,26 +2,63 @@
|
|
2 |
|
3 |
# copied from https://github.com/lm-sys/FastChat/blob/main/fastchat/train/llama_flash_attn_monkey_patch.py
|
4 |
|
5 |
-
|
|
|
6 |
|
7 |
import torch
|
|
|
8 |
import transformers
|
9 |
from einops import rearrange
|
10 |
from flash_attn.bert_padding import pad_input, unpad_input
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
try:
|
13 |
-
from flash_attn.flash_attn_interface import
|
|
|
|
|
|
|
|
|
14 |
except ImportError:
|
|
|
|
|
|
|
15 |
from flash_attn.flash_attn_interface import (
|
16 |
flash_attn_unpadded_qkvpacked_func as flash_attn_varlen_qkvpacked_func,
|
17 |
)
|
18 |
|
19 |
-
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb
|
20 |
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
self,
|
26 |
hidden_states: torch.Tensor,
|
27 |
attention_mask: Optional[torch.Tensor] = None,
|
@@ -29,6 +66,8 @@ def forward(
|
|
29 |
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
30 |
output_attentions: bool = False,
|
31 |
use_cache: bool = False,
|
|
|
|
|
32 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
33 |
"""Input shape: Batch x Time x Channel
|
34 |
|
@@ -37,124 +76,523 @@ def forward(
|
|
37 |
# pylint: disable=duplicate-code
|
38 |
bsz, q_len, _ = hidden_states.size()
|
39 |
|
40 |
-
|
41 |
-
self.
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
self.
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
self.v_proj(
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
# [bsz, q_len, nh, hd]
|
56 |
# [bsz, nh, q_len, hd]
|
57 |
|
58 |
kv_seq_len = key_states.shape[-2]
|
59 |
-
|
|
|
60 |
|
61 |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
62 |
query_states, key_states = apply_rotary_pos_emb(
|
63 |
query_states, key_states, cos, sin, position_ids
|
64 |
)
|
65 |
# [bsz, nh, t, hd]
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
if key_padding_mask is None:
|
82 |
-
qkv = rearrange(qkv, "b s ... -> (b s) ...")
|
83 |
-
max_s = q_len
|
84 |
-
cu_q_lens = torch.arange(
|
85 |
-
0,
|
86 |
-
(bsz + 1) * q_len,
|
87 |
-
step=q_len,
|
88 |
-
dtype=torch.int32,
|
89 |
-
device=qkv.device,
|
90 |
-
)
|
91 |
-
output = flash_attn_varlen_qkvpacked_func(
|
92 |
-
qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
|
93 |
)
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
# special handling using sample packing
|
|
|
|
|
|
|
|
|
97 |
qkv = rearrange(qkv, "b s ... -> (b s) ...")
|
98 |
-
cu_q_lens, max_s = get_cu_seqlens_from_pos_ids(position_ids)
|
99 |
-
cu_q_lens = cu_q_lens.squeeze()
|
100 |
|
101 |
output = flash_attn_varlen_qkvpacked_func(
|
102 |
-
qkv,
|
103 |
)
|
104 |
output = rearrange(output, "(b s) ... -> b s ...", b=bsz)
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
116 |
)
|
117 |
output_unpad = flash_attn_varlen_qkvpacked_func(
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
0.0,
|
122 |
softmax_scale=None,
|
123 |
-
causal=
|
124 |
)
|
125 |
-
output =
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
)
|
135 |
|
136 |
return (
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
)
|
141 |
|
142 |
|
143 |
-
|
144 |
-
# requires the attention mask to be the same as the key_padding_mask
|
145 |
-
def _prepare_decoder_attention_mask(
|
146 |
self,
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
|
|
|
|
|
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
)
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
# copied from https://github.com/lm-sys/FastChat/blob/main/fastchat/train/llama_flash_attn_monkey_patch.py
|
4 |
|
5 |
+
import warnings
|
6 |
+
from typing import List, Optional, Tuple, Union
|
7 |
|
8 |
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
import transformers
|
11 |
from einops import rearrange
|
12 |
from flash_attn.bert_padding import pad_input, unpad_input
|
13 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
14 |
+
from transformers.models.llama.modeling_llama import (
|
15 |
+
LlamaDecoderLayer as OriginalLlamaDecoderLayer,
|
16 |
+
)
|
17 |
+
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, repeat_kv
|
18 |
+
|
19 |
+
from axolotl.monkeypatch.utils import get_cu_seqlens_from_pos_ids
|
20 |
|
21 |
try:
|
22 |
+
from flash_attn.flash_attn_interface import ( # pylint: disable=ungrouped-imports
|
23 |
+
flash_attn_kvpacked_func,
|
24 |
+
flash_attn_varlen_kvpacked_func,
|
25 |
+
flash_attn_varlen_qkvpacked_func,
|
26 |
+
)
|
27 |
except ImportError:
|
28 |
+
from flash_attn.flash_attn_interface import (
|
29 |
+
flash_attn_unpadded_kvpacked_func as flash_attn_varlen_kvpacked_func,
|
30 |
+
)
|
31 |
from flash_attn.flash_attn_interface import (
|
32 |
flash_attn_unpadded_qkvpacked_func as flash_attn_varlen_qkvpacked_func,
|
33 |
)
|
34 |
|
|
|
35 |
|
36 |
+
def replace_llama_attn_with_flash_attn(packed: Optional[bool] = False):
|
37 |
+
transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = ( # pylint: disable=protected-access
|
38 |
+
_prepare_decoder_attention_mask
|
39 |
+
)
|
40 |
+
transformers.models.llama.modeling_llama.LlamaAttention.forward = flashattn_forward
|
41 |
+
if packed:
|
42 |
+
transformers.models.llama.modeling_llama.LlamaDecoderLayer = LlamaDecoderLayer
|
43 |
+
transformers.models.llama.modeling_llama.LlamaModel.forward = (
|
44 |
+
llama_model_forward
|
45 |
+
)
|
46 |
|
47 |
|
48 |
+
# Disable the transformation of the attention mask in LlamaModel as the flash attention
|
49 |
+
# requires the attention mask to be the same as the key_padding_mask
|
50 |
+
def _prepare_decoder_attention_mask(
|
51 |
+
self,
|
52 |
+
attention_mask,
|
53 |
+
input_shape,
|
54 |
+
inputs_embeds,
|
55 |
+
past_key_values_length,
|
56 |
+
): # pylint: disable=unused-argument
|
57 |
+
# [bsz, seq_len]
|
58 |
+
return attention_mask
|
59 |
+
|
60 |
+
|
61 |
+
def flashattn_forward(
|
62 |
self,
|
63 |
hidden_states: torch.Tensor,
|
64 |
attention_mask: Optional[torch.Tensor] = None,
|
|
|
66 |
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
67 |
output_attentions: bool = False,
|
68 |
use_cache: bool = False,
|
69 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
70 |
+
max_seqlen: Optional[torch.Tensor] = None,
|
71 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
72 |
"""Input shape: Batch x Time x Channel
|
73 |
|
|
|
76 |
# pylint: disable=duplicate-code
|
77 |
bsz, q_len, _ = hidden_states.size()
|
78 |
|
79 |
+
if not hasattr(self, "pretraining_tp"):
|
80 |
+
self.pretraining_tp = 1
|
81 |
+
|
82 |
+
if self.pretraining_tp > 1:
|
83 |
+
key_value_slicing = (
|
84 |
+
self.num_key_value_heads * self.head_dim
|
85 |
+
) // self.pretraining_tp
|
86 |
+
query_slices = self.q_proj.weight.split(
|
87 |
+
(self.num_heads * self.head_dim) // self.pretraining_tp, dim=0
|
88 |
+
)
|
89 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
90 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
91 |
+
|
92 |
+
query_states = [
|
93 |
+
F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp)
|
94 |
+
]
|
95 |
+
query_states = torch.cat(query_states, dim=-1)
|
96 |
+
|
97 |
+
key_states = [
|
98 |
+
F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp)
|
99 |
+
]
|
100 |
+
key_states = torch.cat(key_states, dim=-1)
|
101 |
+
|
102 |
+
value_states = [
|
103 |
+
F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp)
|
104 |
+
]
|
105 |
+
value_states = torch.cat(value_states, dim=-1)
|
106 |
+
|
107 |
+
else:
|
108 |
+
query_states = self.q_proj(hidden_states)
|
109 |
+
key_states = self.k_proj(hidden_states)
|
110 |
+
value_states = self.v_proj(hidden_states)
|
111 |
+
|
112 |
+
query_states = query_states.view(
|
113 |
+
bsz, q_len, self.num_heads, self.head_dim
|
114 |
+
).transpose(1, 2)
|
115 |
+
key_states = key_states.view(
|
116 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
117 |
+
).transpose(1, 2)
|
118 |
+
value_states = value_states.view(
|
119 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
120 |
+
).transpose(1, 2)
|
121 |
# [bsz, q_len, nh, hd]
|
122 |
# [bsz, nh, q_len, hd]
|
123 |
|
124 |
kv_seq_len = key_states.shape[-2]
|
125 |
+
if past_key_value is not None:
|
126 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
127 |
|
128 |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
129 |
query_states, key_states = apply_rotary_pos_emb(
|
130 |
query_states, key_states, cos, sin, position_ids
|
131 |
)
|
132 |
# [bsz, nh, t, hd]
|
133 |
+
|
134 |
+
if past_key_value is not None:
|
135 |
+
# reuse k, v, self_attention
|
136 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
137 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
138 |
+
|
139 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
140 |
+
|
141 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
142 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
143 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
144 |
+
|
145 |
+
if output_attentions:
|
146 |
+
warnings.warn(
|
147 |
+
"Output attentions is not supported for patched `LlamaAttention`, returning `None` instead."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
)
|
149 |
+
|
150 |
+
#
|
151 |
+
# flash-attn v2 start
|
152 |
+
#
|
153 |
+
|
154 |
+
if self.training:
|
155 |
+
# during training q,k,v always have same seqlen
|
156 |
+
assert key_states.shape == query_states.shape
|
157 |
+
is_causal = True
|
158 |
+
else:
|
159 |
+
# turn off FA causal mask after first inference autoregressive iteration
|
160 |
+
# only on first autoregressive step q,k,v have same seqlen
|
161 |
+
is_causal = past_key_value is not None
|
162 |
+
|
163 |
+
if cu_seqlens is not None and max_seqlen is not None:
|
164 |
# special handling using sample packing
|
165 |
+
qkv = torch.stack(
|
166 |
+
[query_states, key_states, value_states], dim=2
|
167 |
+
) # [bsz, nh, 3, q_len, hd]
|
168 |
+
qkv = qkv.transpose(1, 3) # [bsz, q_len, 3, nh, hd]
|
169 |
qkv = rearrange(qkv, "b s ... -> (b s) ...")
|
|
|
|
|
170 |
|
171 |
output = flash_attn_varlen_qkvpacked_func(
|
172 |
+
qkv, cu_seqlens, max_seqlen, 0.0, softmax_scale=None, causal=is_causal
|
173 |
)
|
174 |
output = rearrange(output, "(b s) ... -> b s ...", b=bsz)
|
175 |
+
elif query_states.shape == key_states.shape:
|
176 |
+
query_states = query_states.transpose(1, 2)
|
177 |
+
key_states = key_states.transpose(1, 2)
|
178 |
+
value_states = value_states.transpose(1, 2)
|
179 |
+
qkv_unpad, cu_seqlens_q, max_seqlen_q, _, output_pad_fn = generate_qkv(
|
180 |
+
query_states,
|
181 |
+
key_states,
|
182 |
+
value_states,
|
183 |
+
qkvpacked=True,
|
184 |
+
# We have disabled _prepare_decoder_attention_mask in LlamaModel
|
185 |
+
# the attention_mask should be the same as the key_padding_mask
|
186 |
+
key_padding_mask=attention_mask,
|
187 |
+
query_padding_mask=attention_mask[:, -query_states.size(1) :]
|
188 |
+
if attention_mask is not None
|
189 |
+
else None,
|
190 |
)
|
191 |
output_unpad = flash_attn_varlen_qkvpacked_func(
|
192 |
+
qkv_unpad,
|
193 |
+
cu_seqlens_q,
|
194 |
+
max_seqlen_q,
|
195 |
0.0,
|
196 |
softmax_scale=None,
|
197 |
+
causal=is_causal,
|
198 |
)
|
199 |
+
output = output_pad_fn(output_unpad)
|
200 |
+
else:
|
201 |
+
query_states = query_states.transpose(1, 2)
|
202 |
+
key_states = key_states.transpose(1, 2)
|
203 |
+
value_states = value_states.transpose(1, 2)
|
204 |
+
if attention_mask is None or attention_mask.all().item():
|
205 |
+
output = flash_attn_kvpacked_func(
|
206 |
+
query_states,
|
207 |
+
torch.stack([key_states, value_states], 2),
|
208 |
+
causal=is_causal,
|
209 |
+
)
|
210 |
+
else:
|
211 |
+
( # pylint: disable=unbalanced-tuple-unpacking
|
212 |
+
q_unpad,
|
213 |
+
kv_unpad,
|
214 |
+
cu_seqlens_q,
|
215 |
+
cu_seqlens_k,
|
216 |
+
max_seqlen_q,
|
217 |
+
max_seqlen_k,
|
218 |
+
_,
|
219 |
+
_,
|
220 |
+
output_pad_fn,
|
221 |
+
) = generate_qkv(
|
222 |
+
query_states,
|
223 |
+
key_states,
|
224 |
+
value_states,
|
225 |
+
kvpacked=True,
|
226 |
+
key_padding_mask=attention_mask,
|
227 |
+
query_padding_mask=attention_mask[:, -query_states.size(1) :]
|
228 |
+
if attention_mask is not None
|
229 |
+
else None,
|
230 |
+
)
|
231 |
+
output_unpad = flash_attn_varlen_kvpacked_func(
|
232 |
+
q_unpad,
|
233 |
+
kv_unpad,
|
234 |
+
cu_seqlens_q,
|
235 |
+
cu_seqlens_k,
|
236 |
+
max_seqlen_q,
|
237 |
+
max_seqlen_k,
|
238 |
+
0.0,
|
239 |
+
softmax_scale=None,
|
240 |
+
causal=is_causal,
|
241 |
+
)
|
242 |
+
output = output_pad_fn(output_unpad)
|
243 |
+
|
244 |
+
attn_output = output
|
245 |
+
if attn_output.size() != (bsz, q_len, self.num_heads, self.head_dim):
|
246 |
+
raise ValueError(
|
247 |
+
f"`attn_output` should be of size {(bsz, q_len, self.num_heads, self.head_dim)}, but is"
|
248 |
+
f" {attn_output.size()}"
|
249 |
+
)
|
250 |
+
attn_output = rearrange(attn_output, "b s h d -> b s (h d)")
|
251 |
+
|
252 |
+
#
|
253 |
+
# flash-attn v2 end
|
254 |
+
#
|
255 |
+
|
256 |
+
if self.pretraining_tp > 1:
|
257 |
+
attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2)
|
258 |
+
o_proj_slices = self.o_proj.weight.split(
|
259 |
+
self.hidden_size // self.pretraining_tp, dim=1
|
260 |
+
)
|
261 |
+
attn_output = sum(
|
262 |
+
F.linear(attn_output[i], o_proj_slices[i])
|
263 |
+
for i in range(self.pretraining_tp)
|
264 |
+
)
|
265 |
+
else:
|
266 |
+
attn_output = self.o_proj(attn_output)
|
267 |
+
|
268 |
+
return attn_output, None, past_key_value
|
269 |
+
|
270 |
+
|
271 |
+
# based on https://github.com/Dao-AILab/flash-attention/blob/364a5b/tests/test_flash_attn.py#L38
|
272 |
+
def generate_qkv(
|
273 |
+
q,
|
274 |
+
k,
|
275 |
+
v,
|
276 |
+
query_padding_mask=None,
|
277 |
+
key_padding_mask=None,
|
278 |
+
kvpacked=False,
|
279 |
+
qkvpacked=False,
|
280 |
+
): # pylint: disable=invalid-name,unnecessary-lambda-assignment
|
281 |
+
"""
|
282 |
+
Arguments:
|
283 |
+
q: (batch_size, seqlen_q, nheads, d)
|
284 |
+
k: (batch_size, seqlen_k, nheads_k, d)
|
285 |
+
v: (batch_size, seqlen_k, nheads_k, d)
|
286 |
+
query_padding_mask: (batch_size, seqlen), bool
|
287 |
+
key_padding_mask: (batch_size, seqlen), bool
|
288 |
+
"""
|
289 |
+
assert not (kvpacked and qkvpacked)
|
290 |
+
batch_size, seqlen_q, nheads, d = q.shape
|
291 |
+
_, seqlen_k, nheads_k, _ = k.shape
|
292 |
+
assert k.shape == (batch_size, seqlen_k, nheads_k, d)
|
293 |
+
assert v.shape == (batch_size, seqlen_k, nheads_k, d)
|
294 |
+
|
295 |
+
if query_padding_mask is not None:
|
296 |
+
q_unpad, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(
|
297 |
+
q, query_padding_mask
|
298 |
+
)
|
299 |
+
|
300 |
+
output_pad_fn = lambda output_unpad: pad_input( # noqa: E731
|
301 |
+
output_unpad, indices_q, batch_size, seqlen_q
|
302 |
+
)
|
303 |
+
|
304 |
+
else:
|
305 |
+
q_unpad = rearrange(q, "b s h d -> (b s) h d")
|
306 |
+
cu_seqlens_q = torch.arange(
|
307 |
+
0,
|
308 |
+
(batch_size + 1) * seqlen_q,
|
309 |
+
step=seqlen_q,
|
310 |
+
dtype=torch.int32,
|
311 |
+
device=q_unpad.device,
|
312 |
+
)
|
313 |
+
max_seqlen_q = seqlen_q
|
314 |
+
|
315 |
+
output_pad_fn = lambda output_unpad: rearrange( # noqa: E731
|
316 |
+
output_unpad, "(b s) h d -> b s h d", b=batch_size
|
317 |
+
)
|
318 |
+
|
319 |
+
if key_padding_mask is not None:
|
320 |
+
k_unpad, _, cu_seqlens_k, max_seqlen_k = unpad_input(k, key_padding_mask)
|
321 |
+
v_unpad, _, _, _ = unpad_input(v, key_padding_mask)
|
322 |
+
else:
|
323 |
+
k_unpad = rearrange(k, "b s h d -> (b s) h d")
|
324 |
+
v_unpad = rearrange(v, "b s h d -> (b s) h d")
|
325 |
+
cu_seqlens_k = torch.arange(
|
326 |
+
0,
|
327 |
+
(batch_size + 1) * seqlen_k,
|
328 |
+
step=seqlen_k,
|
329 |
+
dtype=torch.int32,
|
330 |
+
device=k_unpad.device,
|
331 |
+
)
|
332 |
+
max_seqlen_k = seqlen_k
|
333 |
+
|
334 |
+
if qkvpacked:
|
335 |
+
assert nheads == nheads_k
|
336 |
+
qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1)
|
337 |
+
qkv = torch.stack([q, k, v], dim=2)
|
338 |
+
return (qkv_unpad, cu_seqlens_q, max_seqlen_q, qkv, output_pad_fn)
|
339 |
+
|
340 |
+
if kvpacked:
|
341 |
+
kv_unpad = torch.stack([k_unpad, v_unpad], dim=1)
|
342 |
+
kv = torch.stack([k, v], dim=2)
|
343 |
+
return (
|
344 |
+
q_unpad,
|
345 |
+
kv_unpad,
|
346 |
+
cu_seqlens_q,
|
347 |
+
cu_seqlens_k,
|
348 |
+
max_seqlen_q,
|
349 |
+
max_seqlen_k,
|
350 |
+
q,
|
351 |
+
kv,
|
352 |
+
output_pad_fn,
|
353 |
)
|
354 |
|
355 |
return (
|
356 |
+
q_unpad,
|
357 |
+
k_unpad,
|
358 |
+
v_unpad,
|
359 |
+
cu_seqlens_q,
|
360 |
+
cu_seqlens_k,
|
361 |
+
max_seqlen_q,
|
362 |
+
max_seqlen_k,
|
363 |
+
q,
|
364 |
+
k,
|
365 |
+
v,
|
366 |
+
output_pad_fn,
|
367 |
)
|
368 |
|
369 |
|
370 |
+
def llama_model_forward(
|
|
|
|
|
371 |
self,
|
372 |
+
input_ids: torch.LongTensor = None,
|
373 |
+
attention_mask: Optional[torch.Tensor] = None,
|
374 |
+
position_ids: Optional[torch.LongTensor] = None,
|
375 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
376 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
377 |
+
use_cache: Optional[bool] = None,
|
378 |
+
output_attentions: Optional[bool] = None,
|
379 |
+
output_hidden_states: Optional[bool] = None,
|
380 |
+
return_dict: Optional[bool] = None,
|
381 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
382 |
+
output_attentions = (
|
383 |
+
output_attentions
|
384 |
+
if output_attentions is not None
|
385 |
+
else self.config.output_attentions
|
386 |
+
)
|
387 |
+
output_hidden_states = (
|
388 |
+
output_hidden_states
|
389 |
+
if output_hidden_states is not None
|
390 |
+
else self.config.output_hidden_states
|
391 |
+
)
|
392 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
393 |
|
394 |
+
return_dict = (
|
395 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
396 |
+
)
|
397 |
|
398 |
+
# retrieve input_ids and inputs_embeds
|
399 |
+
if input_ids is not None and inputs_embeds is not None:
|
400 |
+
raise ValueError(
|
401 |
+
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
|
402 |
+
)
|
403 |
+
if input_ids is not None:
|
404 |
+
batch_size, seq_length = input_ids.shape
|
405 |
+
elif inputs_embeds is not None:
|
406 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
407 |
+
else:
|
408 |
+
raise ValueError(
|
409 |
+
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
410 |
+
)
|
411 |
+
|
412 |
+
seq_length_with_past = seq_length
|
413 |
+
past_key_values_length = 0
|
414 |
+
|
415 |
+
if past_key_values is not None:
|
416 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
417 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
418 |
+
|
419 |
+
cu_seqlens = None
|
420 |
+
max_seqlen = None
|
421 |
+
if position_ids is None:
|
422 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
423 |
+
position_ids = torch.arange(
|
424 |
+
past_key_values_length,
|
425 |
+
seq_length + past_key_values_length,
|
426 |
+
dtype=torch.long,
|
427 |
+
device=device,
|
428 |
+
)
|
429 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
430 |
+
else:
|
431 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
432 |
+
cu_seqlens, max_seqlen = get_cu_seqlens_from_pos_ids(position_ids)
|
433 |
+
cu_seqlens = cu_seqlens.squeeze()
|
434 |
+
|
435 |
+
if inputs_embeds is None:
|
436 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
437 |
+
# embed positions
|
438 |
+
if attention_mask is None:
|
439 |
+
attention_mask = torch.ones(
|
440 |
+
(batch_size, seq_length_with_past),
|
441 |
+
dtype=torch.bool,
|
442 |
+
device=inputs_embeds.device,
|
443 |
+
)
|
444 |
+
attention_mask = (
|
445 |
+
self._prepare_decoder_attention_mask( # pylint: disable=protected-access
|
446 |
+
attention_mask,
|
447 |
+
(batch_size, seq_length),
|
448 |
+
inputs_embeds,
|
449 |
+
past_key_values_length,
|
450 |
+
)
|
451 |
+
)
|
452 |
+
|
453 |
+
hidden_states = inputs_embeds
|
454 |
+
|
455 |
+
if self.gradient_checkpointing and self.training:
|
456 |
+
if use_cache:
|
457 |
+
transformers.logger.warning_once(
|
458 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
459 |
+
)
|
460 |
+
use_cache = False
|
461 |
+
|
462 |
+
# decoder layers
|
463 |
+
all_hidden_states = () if output_hidden_states else None
|
464 |
+
all_self_attns = () if output_attentions else None
|
465 |
+
next_decoder_cache = () if use_cache else None
|
466 |
+
|
467 |
+
for idx, decoder_layer in enumerate(self.layers):
|
468 |
+
if output_hidden_states:
|
469 |
+
all_hidden_states += (hidden_states,)
|
470 |
+
|
471 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
472 |
+
|
473 |
+
if self.gradient_checkpointing and self.training:
|
474 |
+
|
475 |
+
def create_custom_forward(module):
|
476 |
+
def custom_forward(*inputs):
|
477 |
+
# None for past_key_value
|
478 |
+
return module(*inputs)
|
479 |
+
|
480 |
+
return custom_forward
|
481 |
+
|
482 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
483 |
+
create_custom_forward(decoder_layer),
|
484 |
+
hidden_states,
|
485 |
+
attention_mask,
|
486 |
+
position_ids,
|
487 |
+
None,
|
488 |
+
output_attentions,
|
489 |
+
None,
|
490 |
+
cu_seqlens,
|
491 |
+
max_seqlen,
|
492 |
+
)
|
493 |
+
else:
|
494 |
+
layer_outputs = decoder_layer(
|
495 |
+
hidden_states,
|
496 |
+
attention_mask=attention_mask,
|
497 |
+
position_ids=position_ids,
|
498 |
+
past_key_value=past_key_value,
|
499 |
+
output_attentions=output_attentions,
|
500 |
+
use_cache=use_cache,
|
501 |
+
cu_seqlens=cu_seqlens,
|
502 |
+
max_seqlen=max_seqlen,
|
503 |
+
)
|
504 |
+
|
505 |
+
hidden_states = layer_outputs[0]
|
506 |
+
|
507 |
+
if use_cache:
|
508 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
509 |
+
|
510 |
+
if output_attentions:
|
511 |
+
all_self_attns += (layer_outputs[1],)
|
512 |
+
|
513 |
+
hidden_states = self.norm(hidden_states)
|
514 |
+
|
515 |
+
# add hidden states from the last decoder layer
|
516 |
+
if output_hidden_states:
|
517 |
+
all_hidden_states += (hidden_states,)
|
518 |
+
|
519 |
+
next_cache = next_decoder_cache if use_cache else None
|
520 |
+
if not return_dict:
|
521 |
+
return tuple(
|
522 |
+
v
|
523 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
524 |
+
if v is not None
|
525 |
+
)
|
526 |
+
return BaseModelOutputWithPast(
|
527 |
+
last_hidden_state=hidden_states,
|
528 |
+
past_key_values=next_cache,
|
529 |
+
hidden_states=all_hidden_states,
|
530 |
+
attentions=all_self_attns,
|
531 |
)
|
532 |
+
|
533 |
+
|
534 |
+
class LlamaDecoderLayer(OriginalLlamaDecoderLayer):
|
535 |
+
"""
|
536 |
+
patched version of LlamaDecoderLayer to pass through the precalculated cu_seqlens
|
537 |
+
"""
|
538 |
+
|
539 |
+
def forward(
|
540 |
+
self,
|
541 |
+
hidden_states: torch.Tensor,
|
542 |
+
attention_mask: Optional[torch.Tensor] = None,
|
543 |
+
position_ids: Optional[torch.LongTensor] = None,
|
544 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
545 |
+
output_attentions: Optional[bool] = False,
|
546 |
+
use_cache: Optional[bool] = False,
|
547 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
548 |
+
max_seqlen: Optional[torch.Tensor] = None,
|
549 |
+
) -> Tuple[
|
550 |
+
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
551 |
+
]:
|
552 |
+
"""
|
553 |
+
Args:
|
554 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
555 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
556 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
557 |
+
output_attentions (`bool`, *optional*):
|
558 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
559 |
+
returned tensors for more detail.
|
560 |
+
use_cache (`bool`, *optional*):
|
561 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
562 |
+
(see `past_key_values`).
|
563 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
564 |
+
cu_seqlens (`torch.Tensor`, *optional*) cumulative sequence len when packing
|
565 |
+
"""
|
566 |
+
|
567 |
+
residual = hidden_states
|
568 |
+
|
569 |
+
hidden_states = self.input_layernorm(hidden_states)
|
570 |
+
|
571 |
+
# Self Attention
|
572 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
573 |
+
hidden_states=hidden_states,
|
574 |
+
attention_mask=attention_mask,
|
575 |
+
position_ids=position_ids,
|
576 |
+
past_key_value=past_key_value,
|
577 |
+
output_attentions=output_attentions,
|
578 |
+
use_cache=use_cache,
|
579 |
+
cu_seqlens=cu_seqlens,
|
580 |
+
max_seqlen=max_seqlen,
|
581 |
+
)
|
582 |
+
hidden_states = residual + hidden_states
|
583 |
+
|
584 |
+
# Fully Connected
|
585 |
+
residual = hidden_states
|
586 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
587 |
+
hidden_states = self.mlp(hidden_states)
|
588 |
+
hidden_states = residual + hidden_states
|
589 |
+
|
590 |
+
outputs = (hidden_states,)
|
591 |
+
|
592 |
+
if output_attentions:
|
593 |
+
outputs += (self_attn_weights,)
|
594 |
+
|
595 |
+
if use_cache:
|
596 |
+
outputs += (present_key_value,)
|
597 |
+
|
598 |
+
return outputs
|
src/axolotl/monkeypatch/llama_attn_hijack_sdp.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Patched LlamaAttention to use torch.nn.functional.scaled_dot_product_attention
|
3 |
+
"""
|
4 |
+
|
5 |
+
import warnings
|
6 |
+
from typing import Optional, Tuple
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import transformers.models.llama.modeling_llama
|
11 |
+
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, repeat_kv
|
12 |
+
|
13 |
+
|
14 |
+
def hijack_llama_sdp_attention():
|
15 |
+
transformers.models.llama.modeling_llama.LlamaAttention.forward = (
|
16 |
+
sdp_attention_forward
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
def sdp_attention_forward(
|
21 |
+
self,
|
22 |
+
hidden_states: torch.Tensor,
|
23 |
+
attention_mask: Optional[torch.Tensor] = None,
|
24 |
+
position_ids: Optional[torch.LongTensor] = None,
|
25 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
26 |
+
output_attentions: bool = False,
|
27 |
+
use_cache: bool = False,
|
28 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
29 |
+
# pylint: disable=duplicate-code
|
30 |
+
bsz, q_len, _ = hidden_states.size()
|
31 |
+
|
32 |
+
if not hasattr(self, "pretraining_tp"):
|
33 |
+
self.pretraining_tp = 1
|
34 |
+
|
35 |
+
if self.pretraining_tp > 1:
|
36 |
+
key_value_slicing = (
|
37 |
+
self.num_key_value_heads * self.head_dim
|
38 |
+
) // self.pretraining_tp
|
39 |
+
query_slices = self.q_proj.weight.split(
|
40 |
+
(self.num_heads * self.head_dim) // self.pretraining_tp, dim=0
|
41 |
+
)
|
42 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
43 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
44 |
+
|
45 |
+
query_states = [
|
46 |
+
F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp)
|
47 |
+
]
|
48 |
+
query_states = torch.cat(query_states, dim=-1)
|
49 |
+
|
50 |
+
key_states = [
|
51 |
+
F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp)
|
52 |
+
]
|
53 |
+
key_states = torch.cat(key_states, dim=-1)
|
54 |
+
|
55 |
+
value_states = [
|
56 |
+
F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp)
|
57 |
+
]
|
58 |
+
value_states = torch.cat(value_states, dim=-1)
|
59 |
+
|
60 |
+
else:
|
61 |
+
query_states = self.q_proj(hidden_states)
|
62 |
+
key_states = self.k_proj(hidden_states)
|
63 |
+
value_states = self.v_proj(hidden_states)
|
64 |
+
|
65 |
+
query_states = query_states.view(
|
66 |
+
bsz, q_len, self.num_heads, self.head_dim
|
67 |
+
).transpose(1, 2)
|
68 |
+
key_states = key_states.view(
|
69 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
70 |
+
).transpose(1, 2)
|
71 |
+
value_states = value_states.view(
|
72 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
73 |
+
).transpose(1, 2)
|
74 |
+
# [bsz, q_len, nh, hd]
|
75 |
+
# [bsz, nh, q_len, hd]
|
76 |
+
|
77 |
+
kv_seq_len = key_states.shape[-2]
|
78 |
+
if past_key_value is not None:
|
79 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
80 |
+
|
81 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
82 |
+
query_states, key_states = apply_rotary_pos_emb(
|
83 |
+
query_states, key_states, cos, sin, position_ids
|
84 |
+
)
|
85 |
+
# [bsz, nh, t, hd]
|
86 |
+
|
87 |
+
if past_key_value is not None:
|
88 |
+
# reuse k, v, self_attention
|
89 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
90 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
91 |
+
|
92 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
93 |
+
|
94 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
95 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
96 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
97 |
+
|
98 |
+
if output_attentions:
|
99 |
+
warnings.warn(
|
100 |
+
"Output attentions is not supported for patched `LlamaAttention`, returning `None` instead."
|
101 |
+
)
|
102 |
+
|
103 |
+
#
|
104 |
+
# sdp-attn start
|
105 |
+
#
|
106 |
+
|
107 |
+
with torch.backends.cuda.sdp_kernel():
|
108 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
109 |
+
query_states,
|
110 |
+
key_states,
|
111 |
+
value_states,
|
112 |
+
attn_mask=attention_mask,
|
113 |
+
is_causal=False,
|
114 |
+
)
|
115 |
+
|
116 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
117 |
+
raise ValueError(
|
118 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
119 |
+
f" {attn_output.size()}"
|
120 |
+
)
|
121 |
+
attn_output = attn_output.transpose(1, 2)
|
122 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
123 |
+
|
124 |
+
#
|
125 |
+
# sdp-attn end
|
126 |
+
#
|
127 |
+
|
128 |
+
if self.pretraining_tp > 1:
|
129 |
+
attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2)
|
130 |
+
o_proj_slices = self.o_proj.weight.split(
|
131 |
+
self.hidden_size // self.pretraining_tp, dim=1
|
132 |
+
)
|
133 |
+
attn_output = sum(
|
134 |
+
F.linear(attn_output[i], o_proj_slices[i])
|
135 |
+
for i in range(self.pretraining_tp)
|
136 |
+
)
|
137 |
+
else:
|
138 |
+
attn_output = self.o_proj(attn_output)
|
139 |
+
|
140 |
+
return attn_output, None, past_key_value
|
src/axolotl/monkeypatch/llama_attn_hijack_xformers.py
CHANGED
@@ -3,13 +3,13 @@ Directly copied the code from https://raw.githubusercontent.com/oobabooga/text-g
|
|
3 |
"""
|
4 |
|
5 |
import logging
|
6 |
-
import
|
7 |
from typing import Optional, Tuple
|
8 |
|
9 |
import torch
|
10 |
import torch.nn.functional as F
|
11 |
import transformers.models.llama.modeling_llama
|
12 |
-
from
|
13 |
|
14 |
try:
|
15 |
import xformers.ops
|
@@ -21,12 +21,6 @@ def hijack_llama_attention():
|
|
21 |
transformers.models.llama.modeling_llama.LlamaAttention.forward = xformers_forward
|
22 |
|
23 |
|
24 |
-
def hijack_llama_sdp_attention():
|
25 |
-
transformers.models.llama.modeling_llama.LlamaAttention.forward = (
|
26 |
-
sdp_attention_forward
|
27 |
-
)
|
28 |
-
|
29 |
-
|
30 |
def xformers_forward(
|
31 |
self,
|
32 |
hidden_states: torch.Tensor,
|
@@ -81,15 +75,15 @@ def xformers_forward(
|
|
81 |
value_states = value_states.view(
|
82 |
bsz, q_len, self.num_key_value_heads, self.head_dim
|
83 |
).transpose(1, 2)
|
|
|
|
|
84 |
|
85 |
kv_seq_len = key_states.shape[-2]
|
86 |
if past_key_value is not None:
|
87 |
kv_seq_len += past_key_value[0].shape[-2]
|
|
|
88 |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
89 |
-
(
|
90 |
-
query_states,
|
91 |
-
key_states,
|
92 |
-
) = transformers.models.llama.modeling_llama.apply_rotary_pos_emb(
|
93 |
query_states, key_states, cos, sin, position_ids
|
94 |
)
|
95 |
# [bsz, nh, t, hd]
|
@@ -102,74 +96,50 @@ def xformers_forward(
|
|
102 |
past_key_value = (key_states, value_states) if use_cache else None
|
103 |
|
104 |
# repeat k/v heads if n_kv_heads < n_heads
|
105 |
-
key_states =
|
106 |
-
|
107 |
-
)
|
108 |
-
value_states = transformers.models.llama.modeling_llama.repeat_kv(
|
109 |
-
value_states, self.num_key_value_groups
|
110 |
-
)
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
value_states = value_states.transpose(1, 2)
|
117 |
-
|
118 |
-
# This is a nasty hack. We know attention_mask in transformers is either LowerTriangular or all Zeros.
|
119 |
-
# We therefore check if one element in the upper triangular portion is zero. If it is, then the mask is all zeros.
|
120 |
-
if attention_mask is None or attention_mask[0, 0, 0, 1] == 0:
|
121 |
-
# input and output should be of form (bsz, q_len, num_heads, head_dim)
|
122 |
-
attn_output = xformers.ops.memory_efficient_attention(
|
123 |
-
query_states, key_states, value_states, attn_bias=None
|
124 |
-
)
|
125 |
-
else:
|
126 |
-
# input and output should be of form (bsz, q_len, num_heads, head_dim)
|
127 |
-
attn_output = xformers.ops.memory_efficient_attention(
|
128 |
-
query_states,
|
129 |
-
key_states,
|
130 |
-
value_states,
|
131 |
-
# attn_bias=attention_mask,
|
132 |
-
attn_bias=xformers.ops.LowerTriangularMask(),
|
133 |
-
)
|
134 |
-
attn_weights = None
|
135 |
-
else:
|
136 |
-
attn_weights = torch.matmul(
|
137 |
-
query_states, key_states.transpose(2, 3)
|
138 |
-
) / math.sqrt(self.head_dim)
|
139 |
-
|
140 |
-
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
141 |
-
raise ValueError(
|
142 |
-
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
|
143 |
-
f" {attn_weights.size()}"
|
144 |
-
)
|
145 |
-
|
146 |
-
if attention_mask is not None:
|
147 |
-
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
148 |
-
raise ValueError(
|
149 |
-
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
150 |
-
)
|
151 |
-
attn_weights = attn_weights + attention_mask
|
152 |
-
attn_weights = torch.max(
|
153 |
-
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)
|
154 |
-
)
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
).to(query_states.dtype)
|
160 |
-
attn_output = torch.matmul(attn_weights, value_states)
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
f" {attn_output.size()}"
|
166 |
-
)
|
167 |
|
168 |
-
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
|
|
|
|
|
|
|
|
|
|
171 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
172 |
|
|
|
|
|
|
|
|
|
173 |
if self.pretraining_tp > 1:
|
174 |
attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2)
|
175 |
o_proj_slices = self.o_proj.weight.split(
|
@@ -182,103 +152,4 @@ def xformers_forward(
|
|
182 |
else:
|
183 |
attn_output = self.o_proj(attn_output)
|
184 |
|
185 |
-
return attn_output,
|
186 |
-
|
187 |
-
|
188 |
-
def sdp_attention_forward(
|
189 |
-
self,
|
190 |
-
hidden_states: torch.Tensor,
|
191 |
-
attention_mask: Optional[torch.Tensor] = None,
|
192 |
-
position_ids: Optional[torch.LongTensor] = None,
|
193 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
194 |
-
output_attentions: bool = False,
|
195 |
-
use_cache: bool = False,
|
196 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
197 |
-
# pylint: disable=duplicate-code
|
198 |
-
bsz, q_len, _ = hidden_states.size()
|
199 |
-
|
200 |
-
query_states = (
|
201 |
-
self.q_proj(hidden_states)
|
202 |
-
.view(bsz, q_len, self.num_heads, self.head_dim)
|
203 |
-
.transpose(1, 2)
|
204 |
-
)
|
205 |
-
key_states = (
|
206 |
-
self.k_proj(hidden_states)
|
207 |
-
.view(bsz, q_len, self.num_heads, self.head_dim)
|
208 |
-
.transpose(1, 2)
|
209 |
-
)
|
210 |
-
value_states = (
|
211 |
-
self.v_proj(hidden_states)
|
212 |
-
.view(bsz, q_len, self.num_heads, self.head_dim)
|
213 |
-
.transpose(1, 2)
|
214 |
-
)
|
215 |
-
|
216 |
-
kv_seq_len = key_states.shape[-2]
|
217 |
-
if past_key_value is not None:
|
218 |
-
kv_seq_len += past_key_value[0].shape[-2]
|
219 |
-
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
220 |
-
(
|
221 |
-
query_states,
|
222 |
-
key_states,
|
223 |
-
) = transformers.models.llama.modeling_llama.apply_rotary_pos_emb(
|
224 |
-
query_states, key_states, cos, sin, position_ids
|
225 |
-
)
|
226 |
-
# [bsz, nh, t, hd]
|
227 |
-
|
228 |
-
if past_key_value is not None:
|
229 |
-
# reuse k, v, self_attention
|
230 |
-
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
231 |
-
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
232 |
-
|
233 |
-
past_key_value = (key_states, value_states) if use_cache else None
|
234 |
-
|
235 |
-
# We only apply sdp attention if we don't need to output the whole attention matrix
|
236 |
-
if not output_attentions:
|
237 |
-
with torch.backends.cuda.sdp_kernel():
|
238 |
-
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
239 |
-
query_states,
|
240 |
-
key_states,
|
241 |
-
value_states,
|
242 |
-
attn_mask=attention_mask,
|
243 |
-
is_causal=False,
|
244 |
-
)
|
245 |
-
attn_weights = None
|
246 |
-
else:
|
247 |
-
attn_weights = torch.matmul(
|
248 |
-
query_states, key_states.transpose(2, 3)
|
249 |
-
) / math.sqrt(self.head_dim)
|
250 |
-
|
251 |
-
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
252 |
-
raise ValueError(
|
253 |
-
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
|
254 |
-
f" {attn_weights.size()}"
|
255 |
-
)
|
256 |
-
|
257 |
-
if attention_mask is not None:
|
258 |
-
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
259 |
-
raise ValueError(
|
260 |
-
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
261 |
-
)
|
262 |
-
attn_weights = attn_weights + attention_mask
|
263 |
-
attn_weights = torch.max(
|
264 |
-
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)
|
265 |
-
)
|
266 |
-
|
267 |
-
# upcast attention to fp32
|
268 |
-
attn_weights = nn.functional.softmax(
|
269 |
-
attn_weights, dim=-1, dtype=torch.float32
|
270 |
-
).to(query_states.dtype)
|
271 |
-
attn_output = torch.matmul(attn_weights, value_states)
|
272 |
-
|
273 |
-
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
274 |
-
raise ValueError(
|
275 |
-
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
276 |
-
f" {attn_output.size()}"
|
277 |
-
)
|
278 |
-
|
279 |
-
attn_output = attn_output.transpose(1, 2)
|
280 |
-
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
281 |
-
|
282 |
-
attn_output = self.o_proj(attn_output)
|
283 |
-
|
284 |
-
return attn_output, attn_weights, past_key_value
|
|
|
3 |
"""
|
4 |
|
5 |
import logging
|
6 |
+
import warnings
|
7 |
from typing import Optional, Tuple
|
8 |
|
9 |
import torch
|
10 |
import torch.nn.functional as F
|
11 |
import transformers.models.llama.modeling_llama
|
12 |
+
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, repeat_kv
|
13 |
|
14 |
try:
|
15 |
import xformers.ops
|
|
|
21 |
transformers.models.llama.modeling_llama.LlamaAttention.forward = xformers_forward
|
22 |
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def xformers_forward(
|
25 |
self,
|
26 |
hidden_states: torch.Tensor,
|
|
|
75 |
value_states = value_states.view(
|
76 |
bsz, q_len, self.num_key_value_heads, self.head_dim
|
77 |
).transpose(1, 2)
|
78 |
+
# [bsz, q_len, nh, hd]
|
79 |
+
# [bsz, nh, q_len, hd]
|
80 |
|
81 |
kv_seq_len = key_states.shape[-2]
|
82 |
if past_key_value is not None:
|
83 |
kv_seq_len += past_key_value[0].shape[-2]
|
84 |
+
|
85 |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
86 |
+
query_states, key_states = apply_rotary_pos_emb(
|
|
|
|
|
|
|
87 |
query_states, key_states, cos, sin, position_ids
|
88 |
)
|
89 |
# [bsz, nh, t, hd]
|
|
|
96 |
past_key_value = (key_states, value_states) if use_cache else None
|
97 |
|
98 |
# repeat k/v heads if n_kv_heads < n_heads
|
99 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
100 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
if output_attentions:
|
103 |
+
warnings.warn(
|
104 |
+
"Output attentions is not supported for patched `LlamaAttention`, returning `None` instead."
|
105 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
#
|
108 |
+
# xformers-attn start
|
109 |
+
#
|
|
|
|
|
110 |
|
111 |
+
query_states = query_states.transpose(1, 2)
|
112 |
+
key_states = key_states.transpose(1, 2)
|
113 |
+
value_states = value_states.transpose(1, 2)
|
|
|
|
|
114 |
|
115 |
+
# This is a nasty hack. We know attention_mask in transformers is either LowerTriangular or all Zeros.
|
116 |
+
# We therefore check if one element in the upper triangular portion is zero. If it is, then the mask is all zeros.
|
117 |
+
if attention_mask is None or attention_mask[0, 0, 0, 1] == 0:
|
118 |
+
# input and output should be of form (bsz, q_len, num_heads, head_dim)
|
119 |
+
attn_output = xformers.ops.memory_efficient_attention(
|
120 |
+
query_states, key_states, value_states, attn_bias=None
|
121 |
+
)
|
122 |
+
else:
|
123 |
+
# input and output should be of form (bsz, q_len, num_heads, head_dim)
|
124 |
+
attn_output = xformers.ops.memory_efficient_attention(
|
125 |
+
query_states,
|
126 |
+
key_states,
|
127 |
+
value_states,
|
128 |
+
# attn_bias=attention_mask,
|
129 |
+
attn_bias=xformers.ops.LowerTriangularMask(),
|
130 |
+
)
|
131 |
|
132 |
+
if attn_output.size() != (bsz, q_len, self.num_heads, self.head_dim):
|
133 |
+
raise ValueError(
|
134 |
+
f"`attn_output` should be of size {(bsz, q_len, self.num_heads, self.head_dim)}, but is"
|
135 |
+
f" {attn_output.size()}"
|
136 |
+
)
|
137 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
138 |
|
139 |
+
#
|
140 |
+
# xformers-attn end
|
141 |
+
#
|
142 |
+
|
143 |
if self.pretraining_tp > 1:
|
144 |
attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2)
|
145 |
o_proj_slices = self.o_proj.weight.split(
|
|
|
152 |
else:
|
153 |
attn_output = self.o_proj(attn_output)
|
154 |
|
155 |
+
return attn_output, None, past_key_value
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/axolotl/utils/models.py
CHANGED
@@ -103,7 +103,7 @@ def load_model(
|
|
103 |
)
|
104 |
|
105 |
LOG.info("patching with flash attention")
|
106 |
-
replace_llama_attn_with_flash_attn()
|
107 |
elif cfg.is_llama_derived_model and cfg.xformers_attention:
|
108 |
from axolotl.monkeypatch.llama_attn_hijack_xformers import (
|
109 |
hijack_llama_attention,
|
@@ -112,9 +112,7 @@ def load_model(
|
|
112 |
LOG.info("patching with xformers attention")
|
113 |
hijack_llama_attention()
|
114 |
elif cfg.is_llama_derived_model and cfg.sdp_attention:
|
115 |
-
from axolotl.monkeypatch.
|
116 |
-
hijack_llama_sdp_attention,
|
117 |
-
)
|
118 |
|
119 |
LOG.info("patching with sdp attention")
|
120 |
hijack_llama_sdp_attention()
|
|
|
103 |
)
|
104 |
|
105 |
LOG.info("patching with flash attention")
|
106 |
+
replace_llama_attn_with_flash_attn(packed=cfg.sample_packing)
|
107 |
elif cfg.is_llama_derived_model and cfg.xformers_attention:
|
108 |
from axolotl.monkeypatch.llama_attn_hijack_xformers import (
|
109 |
hijack_llama_attention,
|
|
|
112 |
LOG.info("patching with xformers attention")
|
113 |
hijack_llama_attention()
|
114 |
elif cfg.is_llama_derived_model and cfg.sdp_attention:
|
115 |
+
from axolotl.monkeypatch.llama_attn_hijack_sdp import hijack_llama_sdp_attention
|
|
|
|
|
116 |
|
117 |
LOG.info("patching with sdp attention")
|
118 |
hijack_llama_sdp_attention()
|