Feat: Add Qwen (#894)
Browse files* Feat: Add Qwen
* feat: add qwen lora example
* feat: update matrix
* fix: add trust_remote_code
* fix: disable gradient checkpointing
* chore: add warning about gradient checkpointing
* fix: config
* fix: turn off sample packing for this example and reduce seq len
* chore: add comment on seq len
- README.md +2 -0
- examples/qwen/lora.yml +68 -0
- examples/qwen/qlora.yml +68 -0
- src/axolotl/utils/config.py +18 -0
- src/axolotl/utils/models.py +12 -0
README.md
CHANGED
@@ -77,6 +77,7 @@ Features:
|
|
77 |
| XGen | β
| β | β
| β | β | β | β
|
|
78 |
| phi | β
| β
| β
| β | β | β | β |
|
79 |
| RWKV | β
| β | β | β | β | β | β |
|
|
|
80 |
|
81 |
|
82 |
## Quickstart β‘
|
@@ -499,6 +500,7 @@ is_falcon_derived_model:
|
|
499 |
is_llama_derived_model:
|
500 |
# Please note that if you set this to true, `padding_side` will be set to "left" by default
|
501 |
is_mistral_derived_model:
|
|
|
502 |
|
503 |
# optional overrides to the base model configuration
|
504 |
model_config:
|
|
|
77 |
| XGen | β
| β | β
| β | β | β | β
|
|
78 |
| phi | β
| β
| β
| β | β | β | β |
|
79 |
| RWKV | β
| β | β | β | β | β | β |
|
80 |
+
| Qwen | β
| β
| β
| β | β | β | β |
|
81 |
|
82 |
|
83 |
## Quickstart β‘
|
|
|
500 |
is_llama_derived_model:
|
501 |
# Please note that if you set this to true, `padding_side` will be set to "left" by default
|
502 |
is_mistral_derived_model:
|
503 |
+
is_qwen_derived_model:
|
504 |
|
505 |
# optional overrides to the base model configuration
|
506 |
model_config:
|
examples/qwen/lora.yml
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model: Qwen/Qwen-7B
|
2 |
+
model_type: AutoModelForCausalLM
|
3 |
+
tokenizer_type: AutoTokenizer
|
4 |
+
|
5 |
+
is_qwen_derived_model: true
|
6 |
+
trust_remote_code: true
|
7 |
+
|
8 |
+
load_in_8bit: true
|
9 |
+
load_in_4bit: false
|
10 |
+
strict: false
|
11 |
+
|
12 |
+
datasets:
|
13 |
+
- path: mhenrichsen/alpaca_2k_test
|
14 |
+
type: alpaca
|
15 |
+
dataset_prepared_path:
|
16 |
+
val_set_size: 0.05
|
17 |
+
output_dir: ./lora-out
|
18 |
+
|
19 |
+
sequence_len: 2048 # supports up to 8192
|
20 |
+
sample_packing: false
|
21 |
+
pad_to_sequence_len:
|
22 |
+
|
23 |
+
adapter: lora
|
24 |
+
lora_model_dir:
|
25 |
+
lora_r: 32
|
26 |
+
lora_alpha: 16
|
27 |
+
lora_dropout: 0.05
|
28 |
+
lora_target_linear: true
|
29 |
+
lora_fan_in_fan_out:
|
30 |
+
|
31 |
+
wandb_project:
|
32 |
+
wandb_entity:
|
33 |
+
wandb_watch:
|
34 |
+
wandb_run_id:
|
35 |
+
wandb_log_model:
|
36 |
+
|
37 |
+
gradient_accumulation_steps: 4
|
38 |
+
micro_batch_size: 2
|
39 |
+
num_epochs: 4
|
40 |
+
optimizer: adamw_bnb_8bit
|
41 |
+
lr_scheduler: cosine
|
42 |
+
learning_rate: 0.0002
|
43 |
+
|
44 |
+
train_on_inputs: false
|
45 |
+
group_by_length: false
|
46 |
+
bf16: true
|
47 |
+
fp16: false
|
48 |
+
tf32: false
|
49 |
+
|
50 |
+
gradient_checkpointing: false
|
51 |
+
early_stopping_patience:
|
52 |
+
resume_from_checkpoint:
|
53 |
+
local_rank:
|
54 |
+
logging_steps: 1
|
55 |
+
xformers_attention:
|
56 |
+
flash_attention: true
|
57 |
+
|
58 |
+
warmup_steps: 10
|
59 |
+
eval_steps: 0.05
|
60 |
+
eval_table_size:
|
61 |
+
eval_table_max_new_tokens: 128
|
62 |
+
save_steps:
|
63 |
+
debug:
|
64 |
+
deepspeed:
|
65 |
+
weight_decay: 0.0
|
66 |
+
fsdp:
|
67 |
+
fsdp_config:
|
68 |
+
special_tokens:
|
examples/qwen/qlora.yml
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model: Qwen/Qwen-7B
|
2 |
+
model_type: AutoModelForCausalLM
|
3 |
+
tokenizer_type: AutoTokenizer
|
4 |
+
|
5 |
+
is_qwen_derived_model: true
|
6 |
+
trust_remote_code: true
|
7 |
+
|
8 |
+
load_in_8bit: false
|
9 |
+
load_in_4bit: true
|
10 |
+
strict: false
|
11 |
+
|
12 |
+
datasets:
|
13 |
+
- path: mhenrichsen/alpaca_2k_test
|
14 |
+
type: alpaca
|
15 |
+
dataset_prepared_path:
|
16 |
+
val_set_size: 0.05
|
17 |
+
output_dir: ./lora-out
|
18 |
+
|
19 |
+
sequence_len: 2048 # supports up to 8192
|
20 |
+
sample_packing: false
|
21 |
+
pad_to_sequence_len:
|
22 |
+
|
23 |
+
adapter: qlora
|
24 |
+
lora_model_dir:
|
25 |
+
lora_r: 32
|
26 |
+
lora_alpha: 16
|
27 |
+
lora_dropout: 0.05
|
28 |
+
lora_target_linear: true
|
29 |
+
lora_fan_in_fan_out:
|
30 |
+
|
31 |
+
wandb_project:
|
32 |
+
wandb_entity:
|
33 |
+
wandb_watch:
|
34 |
+
wandb_run_id:
|
35 |
+
wandb_log_model:
|
36 |
+
|
37 |
+
gradient_accumulation_steps: 4
|
38 |
+
micro_batch_size: 2
|
39 |
+
num_epochs: 4
|
40 |
+
optimizer: adamw_bnb_8bit
|
41 |
+
lr_scheduler: cosine
|
42 |
+
learning_rate: 0.0002
|
43 |
+
|
44 |
+
train_on_inputs: false
|
45 |
+
group_by_length: false
|
46 |
+
bf16: true
|
47 |
+
fp16: false
|
48 |
+
tf32: false
|
49 |
+
|
50 |
+
gradient_checkpointing: false
|
51 |
+
early_stopping_patience:
|
52 |
+
resume_from_checkpoint:
|
53 |
+
local_rank:
|
54 |
+
logging_steps: 1
|
55 |
+
xformers_attention:
|
56 |
+
flash_attention: true
|
57 |
+
|
58 |
+
warmup_steps: 10
|
59 |
+
eval_steps: 0.05
|
60 |
+
eval_table_size:
|
61 |
+
eval_table_max_new_tokens: 128
|
62 |
+
save_steps:
|
63 |
+
debug:
|
64 |
+
deepspeed:
|
65 |
+
weight_decay: 0.0
|
66 |
+
fsdp:
|
67 |
+
fsdp_config:
|
68 |
+
special_tokens:
|
src/axolotl/utils/config.py
CHANGED
@@ -122,6 +122,19 @@ def normalize_config(cfg):
|
|
122 |
or (cfg.model_type and "mistral" in cfg.model_type.lower())
|
123 |
)
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
if isinstance(cfg.learning_rate, str):
|
126 |
cfg.learning_rate = float(cfg.learning_rate)
|
127 |
|
@@ -379,6 +392,11 @@ def validate_config(cfg):
|
|
379 |
if cfg.warmup_steps and cfg.warmup_ratio:
|
380 |
raise ValueError("warmup_steps and warmup_ratio are mutually exclusive")
|
381 |
|
|
|
|
|
|
|
|
|
|
|
382 |
# TODO
|
383 |
# MPT 7b
|
384 |
# https://github.com/facebookresearch/bitsandbytes/issues/25
|
|
|
122 |
or (cfg.model_type and "mistral" in cfg.model_type.lower())
|
123 |
)
|
124 |
|
125 |
+
cfg.is_qwen_derived_model = (
|
126 |
+
(
|
127 |
+
hasattr(model_config, "model_type")
|
128 |
+
and model_config.model_type
|
129 |
+
in [
|
130 |
+
"qwen",
|
131 |
+
]
|
132 |
+
)
|
133 |
+
or cfg.is_qwen_derived_model
|
134 |
+
or "qwen" in cfg.base_model.lower()
|
135 |
+
or (cfg.model_type and "qwen" in cfg.model_type.lower())
|
136 |
+
)
|
137 |
+
|
138 |
if isinstance(cfg.learning_rate, str):
|
139 |
cfg.learning_rate = float(cfg.learning_rate)
|
140 |
|
|
|
392 |
if cfg.warmup_steps and cfg.warmup_ratio:
|
393 |
raise ValueError("warmup_steps and warmup_ratio are mutually exclusive")
|
394 |
|
395 |
+
if cfg.is_qwen_derived_model and cfg.gradient_checkpointing:
|
396 |
+
LOG.warning(
|
397 |
+
"Gradient checkpointing is broken for Qwen models for transformers>=4.35.0, except main branch."
|
398 |
+
)
|
399 |
+
|
400 |
# TODO
|
401 |
# MPT 7b
|
402 |
# https://github.com/facebookresearch/bitsandbytes/issues/25
|
src/axolotl/utils/models.py
CHANGED
@@ -84,6 +84,18 @@ def load_tokenizer(cfg):
|
|
84 |
if cfg.is_mistral_derived_model and cfg.flash_attention and not cfg.sample_packing:
|
85 |
tokenizer.padding_side = "left"
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
if cfg.special_tokens:
|
88 |
for k, val in cfg.special_tokens.items():
|
89 |
tokenizer.add_special_tokens(
|
|
|
84 |
if cfg.is_mistral_derived_model and cfg.flash_attention and not cfg.sample_packing:
|
85 |
tokenizer.padding_side = "left"
|
86 |
|
87 |
+
# Qwen base only has single token, so we need to set the special tokens
|
88 |
+
if cfg.is_qwen_derived_model:
|
89 |
+
token_ids = ["bos_token_id", "eos_token_id", "pad_token_id", "unk_token_id"]
|
90 |
+
for attr_name in token_ids:
|
91 |
+
if getattr(tokenizer, attr_name) is None:
|
92 |
+
setattr(tokenizer, attr_name, tokenizer.eod_id)
|
93 |
+
|
94 |
+
token_names = ["bos_token", "eos_token", "pad_token", "unk_token"]
|
95 |
+
for attr_name in token_names:
|
96 |
+
if getattr(tokenizer, attr_name) is None:
|
97 |
+
setattr(tokenizer, attr_name, "<|endoftext|>")
|
98 |
+
|
99 |
if cfg.special_tokens:
|
100 |
for k, val in cfg.special_tokens.items():
|
101 |
tokenizer.add_special_tokens(
|