skip the gpu memory checks if the device is set to 'auto' (#609)
Browse files* skip the gpu memory checks if the device is set to 'auto'
* skip gpu mem logging if cpu too
* don't worry about log_gpu_memory_usage since it calls another annotated fn
* rename decorator internal
- src/axolotl/utils/bench.py +27 -3
src/axolotl/utils/bench.py
CHANGED
@@ -1,14 +1,40 @@
|
|
1 |
"""Benchmarking and measurement utilities"""
|
|
|
2 |
|
3 |
import pynvml
|
4 |
import torch
|
5 |
from pynvml.nvml import NVMLError
|
6 |
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def gpu_memory_usage(device=0):
|
9 |
return torch.cuda.memory_allocated(device) / 1024.0**3
|
10 |
|
11 |
|
|
|
12 |
def gpu_memory_usage_all(device=0):
|
13 |
usage = torch.cuda.memory_allocated(device) / 1024.0**3
|
14 |
reserved = torch.cuda.memory_reserved(device) / 1024.0**3
|
@@ -16,6 +42,7 @@ def gpu_memory_usage_all(device=0):
|
|
16 |
return usage, reserved - usage, max(0, smi - reserved)
|
17 |
|
18 |
|
|
|
19 |
def gpu_memory_usage_smi(device=0):
|
20 |
if isinstance(device, torch.device):
|
21 |
device = device.index
|
@@ -31,9 +58,6 @@ def gpu_memory_usage_smi(device=0):
|
|
31 |
|
32 |
|
33 |
def log_gpu_memory_usage(log, msg, device):
|
34 |
-
if not torch.cuda.is_available() or device == "auto":
|
35 |
-
return (0, 0, 0)
|
36 |
-
|
37 |
usage, cache, misc = gpu_memory_usage_all(device)
|
38 |
extras = []
|
39 |
if cache > 0:
|
|
|
1 |
"""Benchmarking and measurement utilities"""
|
2 |
+
import functools
|
3 |
|
4 |
import pynvml
|
5 |
import torch
|
6 |
from pynvml.nvml import NVMLError
|
7 |
|
8 |
|
9 |
+
def check_cuda_device(default_value):
|
10 |
+
"""
|
11 |
+
wraps a function and returns the default value instead of running the
|
12 |
+
wrapped function if cuda isn't available or the device is auto
|
13 |
+
:param default_value:
|
14 |
+
:return:
|
15 |
+
"""
|
16 |
+
|
17 |
+
def deco(func):
|
18 |
+
@functools.wraps(func)
|
19 |
+
def wrapper(*args, **kwargs):
|
20 |
+
device = kwargs.get("device", args[0] if args else None)
|
21 |
+
|
22 |
+
if not torch.cuda.is_available() or device == "auto" or device == "cpu":
|
23 |
+
return default_value
|
24 |
+
|
25 |
+
return func(*args, **kwargs)
|
26 |
+
|
27 |
+
return wrapper
|
28 |
+
|
29 |
+
return deco
|
30 |
+
|
31 |
+
|
32 |
+
@check_cuda_device(0.0)
|
33 |
def gpu_memory_usage(device=0):
|
34 |
return torch.cuda.memory_allocated(device) / 1024.0**3
|
35 |
|
36 |
|
37 |
+
@check_cuda_device((0.0, 0.0, 0.0))
|
38 |
def gpu_memory_usage_all(device=0):
|
39 |
usage = torch.cuda.memory_allocated(device) / 1024.0**3
|
40 |
reserved = torch.cuda.memory_reserved(device) / 1024.0**3
|
|
|
42 |
return usage, reserved - usage, max(0, smi - reserved)
|
43 |
|
44 |
|
45 |
+
@check_cuda_device(0.0)
|
46 |
def gpu_memory_usage_smi(device=0):
|
47 |
if isinstance(device, torch.device):
|
48 |
device = device.index
|
|
|
58 |
|
59 |
|
60 |
def log_gpu_memory_usage(log, msg, device):
|
|
|
|
|
|
|
61 |
usage, cache, misc = gpu_memory_usage_all(device)
|
62 |
extras = []
|
63 |
if cache > 0:
|