Add XGen info to README and example config
Browse files- README.md +1 -0
- examples/xgen-7b/xgen-7b-8k-qlora.yml +90 -0
README.md
CHANGED
@@ -24,6 +24,7 @@
|
|
24 |
| mpt | β
| β | β | β | β | β | β | β |
|
25 |
| falcon | β
| β
| β
| β | β | β | β | β
|
|
26 |
| gpt-j | β
| β
| β
| β | β | β | β | β
|
|
|
|
27 |
|
28 |
|
29 |
## Quickstart β‘
|
|
|
24 |
| mpt | β
| β | β | β | β | β | β | β |
|
25 |
| falcon | β
| β
| β
| β | β | β | β | β
|
|
26 |
| gpt-j | β
| β
| β
| β | β | β | β | β
|
|
27 |
+
| XGen | β
| β | β
| β | β | β | β | β
|
28 |
|
29 |
|
30 |
## Quickstart β‘
|
examples/xgen-7b/xgen-7b-8k-qlora.yml
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# An example finetuning Saleforce's XGen-7b model with 8k context using qlora
|
2 |
+
# on Tim Dettmer's Guanaco dataset.
|
3 |
+
base_model: Salesforce/xgen-7b-8k-base
|
4 |
+
base_model_config: Salesforce/xgen-7b-8k-base
|
5 |
+
trust_remote_code: true
|
6 |
+
model_type: AutoModelForCausalLM
|
7 |
+
tokenizer_type: AutoTokenizer
|
8 |
+
load_in_8bit: false
|
9 |
+
# enable 4bit for QLoRA
|
10 |
+
load_in_4bit: true
|
11 |
+
gptq: false
|
12 |
+
strict: false
|
13 |
+
push_dataset_to_hub:
|
14 |
+
datasets:
|
15 |
+
- path: timdettmers/openassistant-guanaco
|
16 |
+
data_files:
|
17 |
+
- openassistant_best_replies_train.jsonl
|
18 |
+
type: "completion"
|
19 |
+
dataset_prepared_path: last_run_prepared
|
20 |
+
val_set_size: 0.01
|
21 |
+
# enable QLoRA
|
22 |
+
adapter: qlora
|
23 |
+
lora_model_dir:
|
24 |
+
sequence_len: 8192
|
25 |
+
max_packed_sequence_len:
|
26 |
+
|
27 |
+
# hyperparameters from QLoRA paper Appendix B.2
|
28 |
+
# "We find hyperparameters to be largely robust across datasets"
|
29 |
+
lora_r: 64
|
30 |
+
lora_alpha: 16
|
31 |
+
# 0.1 for models up to 13B
|
32 |
+
# 0.05 for 33B and 65B models
|
33 |
+
lora_dropout: 0.05
|
34 |
+
# add LoRA modules on all linear layers of the base model
|
35 |
+
lora_target_modules:
|
36 |
+
lora_target_linear: true
|
37 |
+
lora_fan_in_fan_out:
|
38 |
+
|
39 |
+
wandb_project:
|
40 |
+
wandb_watch:
|
41 |
+
wandb_run_id:
|
42 |
+
wandb_log_model:
|
43 |
+
output_dir: ./qlora-out
|
44 |
+
|
45 |
+
# QLoRA paper Table 9
|
46 |
+
# - 16 for 7b & 13b
|
47 |
+
# - 32 for 33b, 64 for 64b
|
48 |
+
# Max size tested on A6000
|
49 |
+
# - 7b: 40
|
50 |
+
# - 40b: 4
|
51 |
+
# decrease if OOM, increase for max VRAM utilization
|
52 |
+
micro_batch_size: 1
|
53 |
+
gradient_accumulation_steps: 1
|
54 |
+
num_epochs: 3
|
55 |
+
# Optimizer for QLoRA
|
56 |
+
optimizer: paged_adamw_32bit
|
57 |
+
torchdistx_path:
|
58 |
+
lr_scheduler: cosine
|
59 |
+
# QLoRA paper Table 9
|
60 |
+
# - 2e-4 for 7b & 13b
|
61 |
+
# - 1e-4 for 33b & 64b
|
62 |
+
learning_rate: 0.00002
|
63 |
+
train_on_inputs: false
|
64 |
+
group_by_length: false
|
65 |
+
bf16: true
|
66 |
+
fp16: false
|
67 |
+
tf32: false
|
68 |
+
gradient_checkpointing: true
|
69 |
+
# stop training after this many evaluation losses have increased in a row
|
70 |
+
# https://huggingface.co/transformers/v4.2.2/_modules/transformers/trainer_callback.html#EarlyStoppingCallback
|
71 |
+
early_stopping_patience: 3
|
72 |
+
resume_from_checkpoint:
|
73 |
+
auto_resume_from_checkpoints: true
|
74 |
+
local_rank:
|
75 |
+
logging_steps: 1
|
76 |
+
xformers_attention: true
|
77 |
+
flash_attention:
|
78 |
+
gptq_groupsize:
|
79 |
+
gptq_model_v1:
|
80 |
+
warmup_steps: 10
|
81 |
+
eval_steps: 50
|
82 |
+
save_steps: 50
|
83 |
+
debug:
|
84 |
+
deepspeed:
|
85 |
+
weight_decay: 0.0
|
86 |
+
special_tokens:
|
87 |
+
eos_token: "<|endoftext|>"
|
88 |
+
bos_token: "<|endoftext|>"
|
89 |
+
unk_token: "<|endoftext|>"
|
90 |
+
pad_token: "<|endoftext|>"
|