Merge pull request #181 from OpenAccess-AI-Collective/xpos-rope
Browse files
README.md
CHANGED
@@ -419,6 +419,9 @@ flash_attention: # require a100 for llama
|
|
419 |
sdp_attention:
|
420 |
# Landmark attention (only llama)
|
421 |
landmark_attention:
|
|
|
|
|
|
|
422 |
|
423 |
# resume from a specific checkpoint dir
|
424 |
resume_from_checkpoint:
|
|
|
419 |
sdp_attention:
|
420 |
# Landmark attention (only llama)
|
421 |
landmark_attention:
|
422 |
+
# xpos RoPE see https://github.com/kaiokendev/cutoff-len-is-context-len/blob/main/util/xpos_rope_llama_monkey_patch.py
|
423 |
+
# llama only
|
424 |
+
xpos_rope:
|
425 |
|
426 |
# resume from a specific checkpoint dir
|
427 |
resume_from_checkpoint:
|
src/axolotl/monkeypatch/xpos_rope_llama_monkey_patch.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pylint: skip-file
|
2 |
+
"""
|
3 |
+
Copied from https://github.com/kaiokendev/cutoff-len-is-context-len/blob/main/util/xpos_rope_llama_monkey_patch.py
|
4 |
+
"""
|
5 |
+
import torch
|
6 |
+
import transformers
|
7 |
+
import transformers.models.llama.modeling_llama
|
8 |
+
from einops import rearrange
|
9 |
+
|
10 |
+
|
11 |
+
class XposRotaryEmbedding(torch.nn.Module):
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
dim,
|
15 |
+
max_position_embeddings=2048,
|
16 |
+
base=10000,
|
17 |
+
device=None,
|
18 |
+
scale_base=2048,
|
19 |
+
use_xpos=True,
|
20 |
+
):
|
21 |
+
super().__init__()
|
22 |
+
self.max_seq_len_cached = max_position_embeddings
|
23 |
+
self.scale_base = scale_base
|
24 |
+
|
25 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
|
26 |
+
t = torch.arange(self.max_seq_len_cached, device=device).type_as(inv_freq)
|
27 |
+
freqs = torch.einsum("i , j -> i j", t, inv_freq)
|
28 |
+
freqs = torch.cat((freqs, freqs), dim=-1)
|
29 |
+
|
30 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
31 |
+
self.register_buffer("freqs_cached", freqs, persistent=False)
|
32 |
+
|
33 |
+
if not use_xpos:
|
34 |
+
self.register_buffer("scale", None)
|
35 |
+
self.register_buffer("scale_cached", torch.ones(1))
|
36 |
+
return
|
37 |
+
|
38 |
+
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
|
39 |
+
power = (t - (self.max_seq_len_cached // 2)) / self.scale_base
|
40 |
+
scale_cached = scale ** rearrange(power, "n -> n 1")
|
41 |
+
scale_cached = torch.cat((scale_cached, scale_cached), dim=-1)
|
42 |
+
|
43 |
+
self.register_buffer("scale", scale, persistent=False)
|
44 |
+
self.register_buffer("scale_cached", scale_cached, persistent=False)
|
45 |
+
|
46 |
+
def forward(
|
47 |
+
self,
|
48 |
+
x,
|
49 |
+
seq_len,
|
50 |
+
):
|
51 |
+
if seq_len > self.max_seq_len_cached:
|
52 |
+
self.max_seq_len_cached = seq_len
|
53 |
+
t = torch.arange(self.max_seq_len_cached, device=x.device).type_as(
|
54 |
+
self.inv_freq
|
55 |
+
)
|
56 |
+
freqs = torch.einsum("i , j -> i j", t, self.inv_freq)
|
57 |
+
freqs = torch.cat((freqs, freqs), dim=-1).to(dtype=x.dtype)
|
58 |
+
|
59 |
+
self.register_buffer("freqs_cached", freqs)
|
60 |
+
|
61 |
+
if self.scale is None:
|
62 |
+
self.register_buffer(
|
63 |
+
"scale_cached", torch.ones(1, device=x.device).to(dtype=x.dtype)
|
64 |
+
)
|
65 |
+
|
66 |
+
return self.freqs_cached.to(dtype=x.dtype), self.scale_cached
|
67 |
+
|
68 |
+
power = (t - (seq_len // 2)) / self.scale_base
|
69 |
+
scale = self.scale ** rearrange(power, "n -> n 1")
|
70 |
+
scale = torch.cat((scale, scale), dim=-1).to(dtype=x.dtype)
|
71 |
+
self.register_buffer("scale_cached", scale)
|
72 |
+
|
73 |
+
return self.freqs_cached.to(dtype=x.dtype), self.scale_cached.to(dtype=x.dtype)
|
74 |
+
|
75 |
+
|
76 |
+
def rotate_half(x):
|
77 |
+
x1, x2 = x.chunk(2, dim=-1)
|
78 |
+
return torch.cat((-x2, x1), dim=-1)
|
79 |
+
|
80 |
+
|
81 |
+
def apply_rotary_pos_emb(q, k, freqs, scale=1, position_ids=None):
|
82 |
+
freqs = freqs[position_ids, :]
|
83 |
+
if scale.shape[-1] != 1:
|
84 |
+
scale = scale[position_ids, :]
|
85 |
+
|
86 |
+
q_embed = (q * freqs.cos() * scale) + (rotate_half(q) * freqs.sin() * scale)
|
87 |
+
k_embed = (k * freqs.cos() * 1 / scale) + (rotate_half(k) * freqs.sin() * 1 / scale)
|
88 |
+
|
89 |
+
return q_embed, k_embed
|
90 |
+
|
91 |
+
|
92 |
+
def replace_llama_rope_with_xpos_rope():
|
93 |
+
transformers.models.llama.modeling_llama.LlamaRotaryEmbedding = XposRotaryEmbedding
|
94 |
+
transformers.models.llama.modeling_llama.apply_rotary_pos_emb = apply_rotary_pos_emb
|
src/axolotl/utils/models.py
CHANGED
@@ -127,6 +127,14 @@ def load_model(
|
|
127 |
# TODO: Check if this would overwrite previous additional_special_tokens
|
128 |
tokenizer.add_special_tokens({"additional_special_tokens": [MEM_TOKEN]})
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
if cfg.bf16:
|
131 |
torch_dtype = torch.bfloat16
|
132 |
elif cfg.load_in_8bit or cfg.fp16:
|
|
|
127 |
# TODO: Check if this would overwrite previous additional_special_tokens
|
128 |
tokenizer.add_special_tokens({"additional_special_tokens": [MEM_TOKEN]})
|
129 |
|
130 |
+
if cfg.is_llama_derived_model and cfg.xpos_rope:
|
131 |
+
from axolotl.monkeypatch.xpos_rope_llama_monkey_patch import (
|
132 |
+
replace_llama_rope_with_xpos_rope,
|
133 |
+
)
|
134 |
+
|
135 |
+
logging.info("patching with xpos rope")
|
136 |
+
replace_llama_rope_with_xpos_rope()
|
137 |
+
|
138 |
if cfg.bf16:
|
139 |
torch_dtype = torch.bfloat16
|
140 |
elif cfg.load_in_8bit or cfg.fp16:
|