new prompters, misc fixes for output dir missing using fsdp, and changing max seq len
Browse files
scripts/finetune.py
CHANGED
@@ -279,6 +279,9 @@ def train(
|
|
279 |
logging.info(
|
280 |
f"Using Auto-resume functionality to start with checkpoint at {resume_from_checkpoint}"
|
281 |
)
|
|
|
|
|
|
|
282 |
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
|
283 |
|
284 |
logging.info(f"Training Completed!!! Saving pre-trained model to {cfg.output_dir}")
|
|
|
279 |
logging.info(
|
280 |
f"Using Auto-resume functionality to start with checkpoint at {resume_from_checkpoint}"
|
281 |
)
|
282 |
+
|
283 |
+
if not Path(cfg.output_dir).is_dir():
|
284 |
+
os.makedirs(cfg.output_dir, exist_ok=True)
|
285 |
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
|
286 |
|
287 |
logging.info(f"Training Completed!!! Saving pre-trained model to {cfg.output_dir}")
|
src/axolotl/prompt_strategies/alpaca_chat.py
CHANGED
@@ -18,6 +18,15 @@ def load(tokenizer, cfg):
|
|
18 |
)
|
19 |
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
class AlpacaQAPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
22 |
"""
|
23 |
Tokenizing strategy for AlpacaQA
|
@@ -31,6 +40,28 @@ class AlpacaQAPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
|
31 |
)
|
32 |
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
def load_qa(tokenizer, cfg):
|
35 |
return AlpacaQAPromptTokenizingStrategy(
|
36 |
AlpacaPrompter(PromptStyle.CHAT.value),
|
@@ -38,3 +69,12 @@ def load_qa(tokenizer, cfg):
|
|
38 |
cfg.train_on_inputs,
|
39 |
cfg.sequence_len,
|
40 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
)
|
19 |
|
20 |
|
21 |
+
class AlpacaConcisePrompter(AlpacaPrompter):
|
22 |
+
"""
|
23 |
+
Alpaca Prompter extending the system prompt to ask for concise answers
|
24 |
+
"""
|
25 |
+
|
26 |
+
system_prompt = "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that concisely and appropriately completes the request.\n\n"
|
27 |
+
system_no_input_prompt = "Below is an instruction that describes a task. Write a response that appropriately and concisely completes the request.\n\n"
|
28 |
+
|
29 |
+
|
30 |
class AlpacaQAPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
31 |
"""
|
32 |
Tokenizing strategy for AlpacaQA
|
|
|
40 |
)
|
41 |
|
42 |
|
43 |
+
class CamelAIPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
44 |
+
"""
|
45 |
+
Tokenizing strategy for CamelAI datasets
|
46 |
+
"""
|
47 |
+
|
48 |
+
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
|
49 |
+
return (
|
50 |
+
prompt["message_1"],
|
51 |
+
"",
|
52 |
+
prompt["message_1"],
|
53 |
+
)
|
54 |
+
|
55 |
+
|
56 |
+
def load_concise(tokenizer, cfg):
|
57 |
+
return AlpacaPromptTokenizingStrategy(
|
58 |
+
AlpacaConcisePrompter(PromptStyle.CHAT.value),
|
59 |
+
tokenizer,
|
60 |
+
cfg.train_on_inputs,
|
61 |
+
cfg.sequence_len,
|
62 |
+
)
|
63 |
+
|
64 |
+
|
65 |
def load_qa(tokenizer, cfg):
|
66 |
return AlpacaQAPromptTokenizingStrategy(
|
67 |
AlpacaPrompter(PromptStyle.CHAT.value),
|
|
|
69 |
cfg.train_on_inputs,
|
70 |
cfg.sequence_len,
|
71 |
)
|
72 |
+
|
73 |
+
|
74 |
+
def load_camel_ai(tokenizer, cfg):
|
75 |
+
return CamelAIPromptTokenizingStrategy(
|
76 |
+
AlpacaPrompter(PromptStyle.CHAT.value),
|
77 |
+
tokenizer,
|
78 |
+
cfg.train_on_inputs,
|
79 |
+
cfg.sequence_len,
|
80 |
+
)
|
src/axolotl/prompt_strategies/context_qa.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Module containing the classes for Context QA Prompt Tokenization Strategies"""
|
2 |
+
from typing import Tuple
|
3 |
+
|
4 |
+
from axolotl.prompt_tokenizers import InstructionPromptTokenizingStrategy
|
5 |
+
from axolotl.prompters import AlpacaPrompter, PromptStyle
|
6 |
+
|
7 |
+
|
8 |
+
# article, unanswerable_question, question, answer
|
9 |
+
def load_404(tokenizer, cfg):
|
10 |
+
return AlpacaMissingInfoContextPromptTokenizingStrategy(
|
11 |
+
AlpacaContextPrompter(PromptStyle.CHAT.value),
|
12 |
+
tokenizer,
|
13 |
+
cfg.train_on_inputs,
|
14 |
+
cfg.sequence_len,
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
def load(tokenizer, cfg):
|
19 |
+
return AlpacaContextPromptTokenizingStrategy(
|
20 |
+
AlpacaContextPrompter(PromptStyle.CHAT.value),
|
21 |
+
tokenizer,
|
22 |
+
cfg.train_on_inputs,
|
23 |
+
cfg.sequence_len,
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
class AlpacaContextPrompter(AlpacaPrompter):
|
28 |
+
"""
|
29 |
+
Customized system prompted for concise QA
|
30 |
+
"""
|
31 |
+
|
32 |
+
system_prompt = (
|
33 |
+
"Use the following contextual information to concisely answer the question.\n"
|
34 |
+
)
|
35 |
+
system_no_input_prompt = (
|
36 |
+
"Use the following contextual information to concisely answer the question.\n"
|
37 |
+
)
|
38 |
+
|
39 |
+
|
40 |
+
class AlpacaContextPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
41 |
+
"""
|
42 |
+
Tokenization Strategy to combine in-context article with a question and answer
|
43 |
+
"""
|
44 |
+
|
45 |
+
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
|
46 |
+
return (
|
47 |
+
prompt["article"] + "\n===\n" + prompt["question"],
|
48 |
+
"",
|
49 |
+
prompt["answer"],
|
50 |
+
)
|
51 |
+
|
52 |
+
|
53 |
+
class AlpacaMissingInfoContextPromptTokenizingStrategy(
|
54 |
+
InstructionPromptTokenizingStrategy
|
55 |
+
):
|
56 |
+
"""
|
57 |
+
Tokenization Strategy to combine in-context article with a question that can't be answered
|
58 |
+
from the context and a default response to that effect
|
59 |
+
"""
|
60 |
+
|
61 |
+
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
|
62 |
+
return (
|
63 |
+
prompt["article"] + "\n===\n" + prompt["unanswerable_question"],
|
64 |
+
"",
|
65 |
+
"The context provided does not contain any information about your inquiry. "
|
66 |
+
"Therefore, I'm unable to answer your question based on the given context.",
|
67 |
+
)
|
src/axolotl/utils/models.py
CHANGED
@@ -234,6 +234,10 @@ def load_model(
|
|
234 |
base_model,
|
235 |
trust_remote_code=cfg.trust_remote_code or False,
|
236 |
)
|
|
|
|
|
|
|
|
|
237 |
model = AutoModelForCausalLM.from_pretrained(
|
238 |
base_model,
|
239 |
config=config,
|
|
|
234 |
base_model,
|
235 |
trust_remote_code=cfg.trust_remote_code or False,
|
236 |
)
|
237 |
+
# Shouldn't be a problem most of the time. will obviously error if the model doesn't support this
|
238 |
+
# when training starts
|
239 |
+
if config.max_seq_len and cfg.sequence_len > config.max_seq_len:
|
240 |
+
config.max_seq_len = cfg.sequence_len
|
241 |
model = AutoModelForCausalLM.from_pretrained(
|
242 |
base_model,
|
243 |
config=config,
|