plain input/output prompt strategy w/o chat templates (#1346)
Browse files* plain input/output prompt strategy w/o chat templates
* disable duplicate code check
* make sure to add an eos/eot token to the end of the output so it will stop
* multi turn segement support and test
src/axolotl/prompt_strategies/input_output.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Module for plain input/output prompt pairs"""
|
2 |
+
from typing import Generator, Tuple
|
3 |
+
|
4 |
+
from axolotl.prompt_tokenizers import PromptTokenizingStrategy
|
5 |
+
from axolotl.prompters import IGNORE_TOKEN_ID, Prompter
|
6 |
+
|
7 |
+
|
8 |
+
class RawInputOutputStrategy(PromptTokenizingStrategy):
|
9 |
+
"""Prompt Strategy class for input/output pairs"""
|
10 |
+
|
11 |
+
def __init__(self, *args, eos_token=None, **kwargs):
|
12 |
+
super().__init__(*args, **kwargs)
|
13 |
+
self.eos_token = eos_token
|
14 |
+
if not eos_token:
|
15 |
+
self.eos_token = self.tokenizer.eos_token
|
16 |
+
|
17 |
+
def tokenize_prompt(self, prompt):
|
18 |
+
# pylint: disable=duplicate-code
|
19 |
+
input_ids = []
|
20 |
+
labels = []
|
21 |
+
for label, text in self.prompter.build_prompt(prompt["segments"]):
|
22 |
+
tokenized_output = self.tokenizer(
|
23 |
+
text, add_special_tokens=False, return_tensors=None
|
24 |
+
)["input_ids"]
|
25 |
+
input_ids += tokenized_output
|
26 |
+
if label or self.train_on_inputs:
|
27 |
+
labels += tokenized_output
|
28 |
+
else:
|
29 |
+
labels += [IGNORE_TOKEN_ID] * len(tokenized_output)
|
30 |
+
|
31 |
+
tokenized_prompt = {
|
32 |
+
"input_ids": input_ids,
|
33 |
+
"labels": labels,
|
34 |
+
"attention_mask": [1] * len(input_ids),
|
35 |
+
}
|
36 |
+
|
37 |
+
return tokenized_prompt
|
38 |
+
|
39 |
+
|
40 |
+
class RawInputOutputPrompter(Prompter):
|
41 |
+
"""prompter for raw i/o data"""
|
42 |
+
|
43 |
+
def build_prompt(self, source) -> Generator[Tuple[bool, str], None, None]:
|
44 |
+
for segment in source:
|
45 |
+
yield segment["label"], segment["text"]
|
46 |
+
|
47 |
+
|
48 |
+
def load(tokenizer, cfg):
|
49 |
+
return RawInputOutputStrategy(
|
50 |
+
RawInputOutputPrompter(),
|
51 |
+
tokenizer,
|
52 |
+
cfg.train_on_inputs,
|
53 |
+
cfg.sequence_len,
|
54 |
+
)
|
tests/prompt_strategies/test_raw_io.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Test module for raw i/o data for prompts
|
3 |
+
"""
|
4 |
+
import pytest
|
5 |
+
from datasets import Dataset
|
6 |
+
from tokenizers import AddedToken
|
7 |
+
from transformers import AutoTokenizer
|
8 |
+
|
9 |
+
from axolotl.datasets import TokenizedPromptDataset
|
10 |
+
from axolotl.prompt_strategies.input_output import (
|
11 |
+
RawInputOutputPrompter,
|
12 |
+
RawInputOutputStrategy,
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
@pytest.fixture(name="segments_dataset")
|
17 |
+
def fixture_sharegpt_dataset():
|
18 |
+
return Dataset.from_list(
|
19 |
+
[
|
20 |
+
{
|
21 |
+
"segments": [
|
22 |
+
{
|
23 |
+
"label": False,
|
24 |
+
"text": "<s>hello ",
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"label": True,
|
28 |
+
"text": "hi there.<eot>",
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"label": False,
|
32 |
+
"text": "goodbye ",
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"label": True,
|
36 |
+
"text": "farewell<eot>",
|
37 |
+
},
|
38 |
+
]
|
39 |
+
}
|
40 |
+
]
|
41 |
+
)
|
42 |
+
|
43 |
+
|
44 |
+
@pytest.fixture(name="tokenizer")
|
45 |
+
def fixture_tokenizer():
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
|
47 |
+
tokenizer.add_tokens(
|
48 |
+
[
|
49 |
+
AddedToken("<eot>", rstrip=False, lstrip=False, normalized=False),
|
50 |
+
]
|
51 |
+
)
|
52 |
+
|
53 |
+
return tokenizer
|
54 |
+
|
55 |
+
|
56 |
+
class TestRawInputOutputPrompts:
|
57 |
+
"""
|
58 |
+
Test class for raw i/o prompter
|
59 |
+
"""
|
60 |
+
|
61 |
+
def test_segment_prompts(self, segments_dataset, tokenizer):
|
62 |
+
strategy = RawInputOutputStrategy(
|
63 |
+
RawInputOutputPrompter(),
|
64 |
+
tokenizer,
|
65 |
+
False, # train_on_inputs
|
66 |
+
2048, # sequence_len
|
67 |
+
)
|
68 |
+
|
69 |
+
dataset_wrapper = TokenizedPromptDataset(
|
70 |
+
strategy, segments_dataset, process_count=1
|
71 |
+
)
|
72 |
+
|
73 |
+
input_ids = dataset_wrapper[0]["input_ids"]
|
74 |
+
labels = dataset_wrapper[0]["labels"]
|
75 |
+
|
76 |
+
assert (
|
77 |
+
tokenizer.decode(input_ids)
|
78 |
+
== "<s> hello hi there.<eot> goodbye farewell<eot>"
|
79 |
+
)
|
80 |
+
# fmt: off
|
81 |
+
assert input_ids == [
|
82 |
+
1, # <s>
|
83 |
+
6312, # hell
|
84 |
+
28709, # o
|
85 |
+
28705, #
|
86 |
+
12014, # hi
|
87 |
+
736, # there
|
88 |
+
28723, # .
|
89 |
+
32000, # <eot>
|
90 |
+
1179, # good
|
91 |
+
17664, # bye
|
92 |
+
28705, #
|
93 |
+
19111, # fare
|
94 |
+
5458, # well
|
95 |
+
32000, # <eot>
|
96 |
+
]
|
97 |
+
# fmt: on
|
98 |
+
|
99 |
+
# fmt: off
|
100 |
+
assert labels == [
|
101 |
+
-100, # <s>
|
102 |
+
-100, # hell
|
103 |
+
-100, # o
|
104 |
+
-100, #
|
105 |
+
12014, # hi
|
106 |
+
736, # there
|
107 |
+
28723, # .
|
108 |
+
32000, # <eot>
|
109 |
+
-100, # good
|
110 |
+
-100, # bye
|
111 |
+
-100, #
|
112 |
+
19111, # fare
|
113 |
+
5458, # well
|
114 |
+
32000, # <eot>
|
115 |
+
]
|
116 |
+
# fmt: on
|