fix sharegpt tokenization, refactor tokenization debugging
Browse files- scripts/finetune.py +4 -31
- src/axolotl/prompters.py +16 -5
- src/axolotl/utils/models.py +5 -5
- src/axolotl/utils/tokenization.py +33 -0
- src/axolotl/utils/trainer.py +5 -0
scripts/finetune.py
CHANGED
@@ -11,6 +11,8 @@ import yaml
|
|
11 |
from attrdict import AttrDefault
|
12 |
|
13 |
# add src to the pythonpath so we don't need to pip install this
|
|
|
|
|
14 |
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
15 |
src_dir = os.path.join(project_root, "src")
|
16 |
sys.path.insert(0, src_dir)
|
@@ -42,36 +44,6 @@ def choose_device(cfg):
|
|
42 |
cfg.device_map = {"": cfg.device}
|
43 |
|
44 |
|
45 |
-
def check_dataset_labels(dataset, tokenizer):
|
46 |
-
from termcolor import colored
|
47 |
-
|
48 |
-
# the dataset is already shuffled, so let's just check the first 5 elements
|
49 |
-
for idx in range(5):
|
50 |
-
# Get the input_ids, labels, and attention_mask from the dataset
|
51 |
-
input_ids = dataset[idx]["input_ids"]
|
52 |
-
labels = dataset[idx]["labels"]
|
53 |
-
attention_mask = dataset[idx]["attention_mask"]
|
54 |
-
|
55 |
-
# You can compare the input_ids and labels element-wise
|
56 |
-
# Remember to ignore positions with IGNORE_TOKEN_ID (if you use it) or attention_mask equal to 0
|
57 |
-
colored_tokens = []
|
58 |
-
for i, (input_id, label_id, mask) in enumerate(
|
59 |
-
zip(input_ids, labels, attention_mask)
|
60 |
-
):
|
61 |
-
decoded_input_token = tokenizer.decode(input_id)
|
62 |
-
# Choose the color based on whether the label has the ignore value or not
|
63 |
-
color = (
|
64 |
-
"red" if label_id == -100 else ("yellow" if label_id == 0 else "green")
|
65 |
-
)
|
66 |
-
colored_token = colored(decoded_input_token, color) + colored(
|
67 |
-
f"({label_id}, {mask})", "white"
|
68 |
-
)
|
69 |
-
colored_tokens.append(colored_token)
|
70 |
-
|
71 |
-
logging.info(" ".join(colored_tokens))
|
72 |
-
logging.info("\n\n\n")
|
73 |
-
|
74 |
-
|
75 |
def do_inference(cfg, model, tokenizer):
|
76 |
tokenizer.add_special_tokens({"unk_token": "<unk>"})
|
77 |
tokenizer.add_special_tokens({"bos_token": "<s>"})
|
@@ -199,8 +171,9 @@ def train(
|
|
199 |
return
|
200 |
|
201 |
if cfg.debug:
|
|
|
202 |
check_dataset_labels(
|
203 |
-
train_dataset.select([random.randrange(0, len(train_dataset) - 1)]),
|
204 |
tokenizer,
|
205 |
)
|
206 |
|
|
|
11 |
from attrdict import AttrDefault
|
12 |
|
13 |
# add src to the pythonpath so we don't need to pip install this
|
14 |
+
from axolotl.utils.tokenization import check_dataset_labels
|
15 |
+
|
16 |
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
17 |
src_dir = os.path.join(project_root, "src")
|
18 |
sys.path.insert(0, src_dir)
|
|
|
44 |
cfg.device_map = {"": cfg.device}
|
45 |
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
def do_inference(cfg, model, tokenizer):
|
48 |
tokenizer.add_special_tokens({"unk_token": "<unk>"})
|
49 |
tokenizer.add_special_tokens({"bos_token": "<s>"})
|
|
|
171 |
return
|
172 |
|
173 |
if cfg.debug:
|
174 |
+
logging.info("check_dataset_labels...")
|
175 |
check_dataset_labels(
|
176 |
+
train_dataset.select([random.randrange(0, len(train_dataset) - 1) for i in range(5)]),
|
177 |
tokenizer,
|
178 |
)
|
179 |
|
src/axolotl/prompters.py
CHANGED
@@ -127,7 +127,7 @@ conv_vicuna_v1_1 = Conversation(
|
|
127 |
|
128 |
|
129 |
class ShareGPTPrompter:
|
130 |
-
def build_prompt(self, source, tokenizer):
|
131 |
# ignore the system prompt if provided
|
132 |
if source[0]["from"] == "system":
|
133 |
source.pop(0)
|
@@ -157,13 +157,14 @@ class ShareGPTPrompter:
|
|
157 |
role = roles[sentence["from"]]
|
158 |
assert role == conv.roles[j % 2]
|
159 |
conv.append_message(role, sentence["value"])
|
|
|
160 |
conversation = conv.get_prompt()
|
161 |
|
162 |
# Tokenize conversations
|
163 |
tokenized_result = tokenizer(
|
164 |
conversation,
|
165 |
truncation=True,
|
166 |
-
max_length=
|
167 |
padding=False,
|
168 |
return_tensors=None,
|
169 |
)
|
@@ -173,7 +174,9 @@ class ShareGPTPrompter:
|
|
173 |
sep = conv.sep + conv.roles[1] + ": "
|
174 |
|
175 |
rounds = conversation.split(conv.sep2)
|
|
|
176 |
cur_len = 1
|
|
|
177 |
for i, rou in enumerate(rounds):
|
178 |
if rou == "":
|
179 |
break
|
@@ -182,19 +185,27 @@ class ShareGPTPrompter:
|
|
182 |
if len(parts) != 2:
|
183 |
break
|
184 |
parts[0] += sep
|
185 |
-
round_len = len(tokenizer(rou)["input_ids"])
|
186 |
-
|
|
|
187 |
target[cur_len : cur_len + instruction_len] = [
|
188 |
IGNORE_TOKEN_ID
|
189 |
] * instruction_len
|
190 |
|
191 |
cur_len += round_len
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
attention_mask = [
|
194 |
1 if x != tokenizer.pad_token_id else 0
|
195 |
for x in tokenized_result["input_ids"]
|
196 |
]
|
197 |
|
|
|
198 |
return dict(
|
199 |
input_ids=tokenized_result["input_ids"],
|
200 |
labels=target,
|
|
|
127 |
|
128 |
|
129 |
class ShareGPTPrompter:
|
130 |
+
def build_prompt(self, source, tokenizer, sequence_len=2048):
|
131 |
# ignore the system prompt if provided
|
132 |
if source[0]["from"] == "system":
|
133 |
source.pop(0)
|
|
|
157 |
role = roles[sentence["from"]]
|
158 |
assert role == conv.roles[j % 2]
|
159 |
conv.append_message(role, sentence["value"])
|
160 |
+
# TODO, this concatenates everything, but doesn't seem to properly add the eos_token_id, as the eos_token gets split up
|
161 |
conversation = conv.get_prompt()
|
162 |
|
163 |
# Tokenize conversations
|
164 |
tokenized_result = tokenizer(
|
165 |
conversation,
|
166 |
truncation=True,
|
167 |
+
max_length=sequence_len, # FIXME
|
168 |
padding=False,
|
169 |
return_tensors=None,
|
170 |
)
|
|
|
174 |
sep = conv.sep + conv.roles[1] + ": "
|
175 |
|
176 |
rounds = conversation.split(conv.sep2)
|
177 |
+
rounds = [r + conv.sep2 for r in rounds]
|
178 |
cur_len = 1
|
179 |
+
target[0] = IGNORE_TOKEN_ID # mask out the bos
|
180 |
for i, rou in enumerate(rounds):
|
181 |
if rou == "":
|
182 |
break
|
|
|
185 |
if len(parts) != 2:
|
186 |
break
|
187 |
parts[0] += sep
|
188 |
+
round_len = len(tokenizer(rou)["input_ids"]) - 1 # -1 ignores the bos_token generated for this
|
189 |
+
# we have to strip the initial part, any dangling whitespace creates an additional ghost token
|
190 |
+
instruction_len = len(tokenizer(parts[0].strip())["input_ids"]) - 1 # -1 ignores the bos_token generated for this
|
191 |
target[cur_len : cur_len + instruction_len] = [
|
192 |
IGNORE_TOKEN_ID
|
193 |
] * instruction_len
|
194 |
|
195 |
cur_len += round_len
|
196 |
+
if cur_len >= sequence_len:
|
197 |
+
break
|
198 |
+
|
199 |
+
# Fix: Truncate the target to have the same length as input_ids
|
200 |
+
target = target[:len(tokenized_result["input_ids"])]
|
201 |
+
# target[cur_len:] = [IGNORE_TOKEN_ID] * (len(target) - cur_len)
|
202 |
+
|
203 |
attention_mask = [
|
204 |
1 if x != tokenizer.pad_token_id else 0
|
205 |
for x in tokenized_result["input_ids"]
|
206 |
]
|
207 |
|
208 |
+
# TODO truncate len to sequence_len
|
209 |
return dict(
|
210 |
input_ids=tokenized_result["input_ids"],
|
211 |
labels=target,
|
src/axolotl/utils/models.py
CHANGED
@@ -53,7 +53,7 @@ def load_model(
|
|
53 |
logging.info("patching with xformers attention")
|
54 |
hijack_llama_attention()
|
55 |
|
56 |
-
torch_dtype =
|
57 |
try:
|
58 |
if cfg.load_4bit:
|
59 |
from alpaca_lora_4bit.monkeypatch.peft_tuners_lora_monkey_patch import (
|
@@ -161,11 +161,11 @@ def load_model(
|
|
161 |
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
162 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
163 |
|
164 |
-
if cfg.
|
165 |
-
for k, v in cfg.
|
166 |
-
|
167 |
|
168 |
-
if load_in_8bit and
|
169 |
logging.info("converting model w/ prepare_model_for_int8_training")
|
170 |
model = prepare_model_for_int8_training(model)
|
171 |
|
|
|
53 |
logging.info("patching with xformers attention")
|
54 |
hijack_llama_attention()
|
55 |
|
56 |
+
torch_dtype = torch.float16 if cfg.load_in_8bit or cfg.fp16 or cfg.bf16 else torch.float32
|
57 |
try:
|
58 |
if cfg.load_4bit:
|
59 |
from alpaca_lora_4bit.monkeypatch.peft_tuners_lora_monkey_patch import (
|
|
|
161 |
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
162 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
163 |
|
164 |
+
if cfg.tokens:
|
165 |
+
for k, v in cfg.tokens.items():
|
166 |
+
tokenizer.add_special_tokens({k: v})
|
167 |
|
168 |
+
if load_in_8bit and cfg.load_4bit:
|
169 |
logging.info("converting model w/ prepare_model_for_int8_training")
|
170 |
model = prepare_model_for_int8_training(model)
|
171 |
|
src/axolotl/utils/tokenization.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from termcolor import colored
|
2 |
+
import logging
|
3 |
+
|
4 |
+
def check_dataset_labels(dataset, tokenizer):
|
5 |
+
# the dataset is already shuffled, so let's just check the first 5 elements
|
6 |
+
for idx in range(5):
|
7 |
+
check_example_labels(dataset[idx], tokenizer)
|
8 |
+
|
9 |
+
|
10 |
+
def check_example_labels(example, tokenizer):
|
11 |
+
# Get the input_ids, labels, and attention_mask from the dataset
|
12 |
+
input_ids = example["input_ids"]
|
13 |
+
labels = example["labels"]
|
14 |
+
attention_mask =example["attention_mask"]
|
15 |
+
|
16 |
+
# You can compare the input_ids and labels element-wise
|
17 |
+
# Remember to ignore positions with IGNORE_TOKEN_ID (if you use it) or attention_mask equal to 0
|
18 |
+
colored_tokens = []
|
19 |
+
for i, (input_id, label_id, mask) in enumerate(
|
20 |
+
zip(input_ids, labels, attention_mask)
|
21 |
+
):
|
22 |
+
decoded_input_token = tokenizer.decode(input_id)
|
23 |
+
# Choose the color based on whether the label has the ignore value or not
|
24 |
+
color = (
|
25 |
+
"red" if label_id == -100 else ("yellow" if label_id == 0 else "green")
|
26 |
+
)
|
27 |
+
colored_token = colored(decoded_input_token, color) + colored(
|
28 |
+
f"({label_id}, {mask}, {input_id})", "white"
|
29 |
+
)
|
30 |
+
colored_tokens.append(colored_token)
|
31 |
+
|
32 |
+
logging.info(" ".join(colored_tokens))
|
33 |
+
logging.info("\n\n\n")
|
src/axolotl/utils/trainer.py
CHANGED
@@ -61,6 +61,11 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer):
|
|
61 |
group_by_length=cfg.group_by_length,
|
62 |
report_to="wandb" if cfg.use_wandb else None,
|
63 |
run_name=cfg.wandb_run_id if cfg.use_wandb else None,
|
|
|
|
|
|
|
|
|
|
|
64 |
**training_arguments_kwargs,
|
65 |
)
|
66 |
|
|
|
61 |
group_by_length=cfg.group_by_length,
|
62 |
report_to="wandb" if cfg.use_wandb else None,
|
63 |
run_name=cfg.wandb_run_id if cfg.use_wandb else None,
|
64 |
+
optim=cfg.optimizer if cfg.optimizer != "adam8bit" else cfg.optimizer,
|
65 |
+
lr_scheduler_type=cfg.lr_scheduler if cfg.lr_scheduler else None,
|
66 |
+
weight_decay=cfg.weight_decay if cfg.weight_decay else 0.0,
|
67 |
+
fsdp=cfg.fsdp.split(" ") if cfg.fsdp else None,
|
68 |
+
fsdp_transformer_layer_cls_to_wrap=cfg.fsdp_transformer_layer_cls_to_wrap if cfg.fsdp_transformer_layer_cls_to_wrap else None,
|
69 |
**training_arguments_kwargs,
|
70 |
)
|
71 |
|