Add desc to map/filter (#1162)
Browse files* Add desc to map/filter
* update descriptions
---------
Co-authored-by: Wing Lian <wing.lian@gmail.com>
- src/axolotl/cli/__init__.py +4 -1
- src/axolotl/datasets.py +1 -0
- src/axolotl/utils/data.py +1 -0
- src/axolotl/utils/trainer.py +10 -1
src/axolotl/cli/__init__.py
CHANGED
@@ -410,7 +410,10 @@ def load_rl_datasets(
|
|
410 |
for i, data_set in enumerate(train_datasets):
|
411 |
_type = cfg.datasets[i]["type"]
|
412 |
ds_type_fn = locals()[_type]
|
413 |
-
train_datasets[i] = data_set.map(
|
|
|
|
|
|
|
414 |
train_dataset = concatenate_datasets(train_datasets)
|
415 |
|
416 |
# eval_dataset = eval_dataset.map(intel_apply_chatml)
|
|
|
410 |
for i, data_set in enumerate(train_datasets):
|
411 |
_type = cfg.datasets[i]["type"]
|
412 |
ds_type_fn = locals()[_type]
|
413 |
+
train_datasets[i] = data_set.map(
|
414 |
+
ds_type_fn,
|
415 |
+
desc="Mapping RL Dataset",
|
416 |
+
)
|
417 |
train_dataset = concatenate_datasets(train_datasets)
|
418 |
|
419 |
# eval_dataset = eval_dataset.map(intel_apply_chatml)
|
src/axolotl/datasets.py
CHANGED
@@ -57,6 +57,7 @@ class TokenizedPromptDataset(Dataset):
|
|
57 |
num_proc=num_proc,
|
58 |
remove_columns=features,
|
59 |
keep_in_memory=self.keep_in_memory,
|
|
|
60 |
**map_kwargs,
|
61 |
)
|
62 |
|
|
|
57 |
num_proc=num_proc,
|
58 |
remove_columns=features,
|
59 |
keep_in_memory=self.keep_in_memory,
|
60 |
+
desc="Tokenizing Prompts",
|
61 |
**map_kwargs,
|
62 |
)
|
63 |
|
src/axolotl/utils/data.py
CHANGED
@@ -792,6 +792,7 @@ def load_pretraining_dataset(path, tokenizer, cfg, name=None, max_tokens=2048, s
|
|
792 |
# remove all the existing columns after mapping since they end up having
|
793 |
# a different length than the encoded/tokenized column
|
794 |
remove_columns=dataset.features.keys(),
|
|
|
795 |
)
|
796 |
return dataset
|
797 |
|
|
|
792 |
# remove all the existing columns after mapping since they end up having
|
793 |
# a different length than the encoded/tokenized column
|
794 |
remove_columns=dataset.features.keys(),
|
795 |
+
desc="Encoding Pretraining",
|
796 |
)
|
797 |
return dataset
|
798 |
|
src/axolotl/utils/trainer.py
CHANGED
@@ -134,12 +134,14 @@ def process_datasets_for_packing(cfg, train_dataset, eval_dataset, tokenizer):
|
|
134 |
drop_long,
|
135 |
num_proc=cfg.dataset_processes,
|
136 |
load_from_cache_file=not cfg.is_preprocess,
|
|
|
137 |
)
|
138 |
if eval_dataset:
|
139 |
eval_dataset = eval_dataset.filter(
|
140 |
drop_long,
|
141 |
num_proc=cfg.dataset_processes,
|
142 |
load_from_cache_file=not cfg.is_preprocess,
|
|
|
143 |
)
|
144 |
|
145 |
if cfg.group_by_length:
|
@@ -147,6 +149,7 @@ def process_datasets_for_packing(cfg, train_dataset, eval_dataset, tokenizer):
|
|
147 |
add_length,
|
148 |
num_proc=cfg.dataset_processes,
|
149 |
load_from_cache_file=not cfg.is_preprocess,
|
|
|
150 |
)
|
151 |
|
152 |
if cfg.sample_packing:
|
@@ -154,6 +157,7 @@ def process_datasets_for_packing(cfg, train_dataset, eval_dataset, tokenizer):
|
|
154 |
add_position_ids,
|
155 |
num_proc=cfg.dataset_processes,
|
156 |
load_from_cache_file=not cfg.is_preprocess,
|
|
|
157 |
)
|
158 |
if cfg.eval_sample_packing is not False:
|
159 |
if eval_dataset:
|
@@ -161,6 +165,7 @@ def process_datasets_for_packing(cfg, train_dataset, eval_dataset, tokenizer):
|
|
161 |
add_position_ids,
|
162 |
num_proc=cfg.dataset_processes,
|
163 |
load_from_cache_file=not cfg.is_preprocess,
|
|
|
164 |
)
|
165 |
|
166 |
return train_dataset, eval_dataset
|
@@ -169,9 +174,13 @@ def process_datasets_for_packing(cfg, train_dataset, eval_dataset, tokenizer):
|
|
169 |
def process_pretraining_datasets_for_packing(train_dataset, sequence_len):
|
170 |
drop_long = partial(drop_long_seq, sequence_len=sequence_len)
|
171 |
|
172 |
-
train_dataset = train_dataset.filter(
|
|
|
|
|
|
|
173 |
train_dataset = train_dataset.map(
|
174 |
add_position_ids,
|
|
|
175 |
)
|
176 |
return train_dataset
|
177 |
|
|
|
134 |
drop_long,
|
135 |
num_proc=cfg.dataset_processes,
|
136 |
load_from_cache_file=not cfg.is_preprocess,
|
137 |
+
desc="Dropping Long Sequences",
|
138 |
)
|
139 |
if eval_dataset:
|
140 |
eval_dataset = eval_dataset.filter(
|
141 |
drop_long,
|
142 |
num_proc=cfg.dataset_processes,
|
143 |
load_from_cache_file=not cfg.is_preprocess,
|
144 |
+
desc="Dropping Long Sequences",
|
145 |
)
|
146 |
|
147 |
if cfg.group_by_length:
|
|
|
149 |
add_length,
|
150 |
num_proc=cfg.dataset_processes,
|
151 |
load_from_cache_file=not cfg.is_preprocess,
|
152 |
+
desc="Group By Length",
|
153 |
)
|
154 |
|
155 |
if cfg.sample_packing:
|
|
|
157 |
add_position_ids,
|
158 |
num_proc=cfg.dataset_processes,
|
159 |
load_from_cache_file=not cfg.is_preprocess,
|
160 |
+
desc="Add position_id column (Sample Packing)",
|
161 |
)
|
162 |
if cfg.eval_sample_packing is not False:
|
163 |
if eval_dataset:
|
|
|
165 |
add_position_ids,
|
166 |
num_proc=cfg.dataset_processes,
|
167 |
load_from_cache_file=not cfg.is_preprocess,
|
168 |
+
desc="Add position_id column (Sample Packing)",
|
169 |
)
|
170 |
|
171 |
return train_dataset, eval_dataset
|
|
|
174 |
def process_pretraining_datasets_for_packing(train_dataset, sequence_len):
|
175 |
drop_long = partial(drop_long_seq, sequence_len=sequence_len)
|
176 |
|
177 |
+
train_dataset = train_dataset.filter(
|
178 |
+
drop_long,
|
179 |
+
desc="Dropping Long Sequences",
|
180 |
+
)
|
181 |
train_dataset = train_dataset.map(
|
182 |
add_position_ids,
|
183 |
+
desc="Add position_id column (Pretraining Sample Packing)",
|
184 |
)
|
185 |
return train_dataset
|
186 |
|