Merge pull request #158 from OpenAccess-AI-Collective/prompter-fixes
Browse files
src/axolotl/prompt_strategies/alpaca_chat.py
CHANGED
@@ -49,7 +49,7 @@ class CamelAIPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
|
49 |
return (
|
50 |
prompt["message_1"],
|
51 |
"",
|
52 |
-
prompt["
|
53 |
)
|
54 |
|
55 |
|
|
|
49 |
return (
|
50 |
prompt["message_1"],
|
51 |
"",
|
52 |
+
prompt["message_2"],
|
53 |
)
|
54 |
|
55 |
|
src/axolotl/prompt_strategies/sharegpt_simple.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Module containing the SimpleShareGPTPromptTokenizingStrategy class"""
|
2 |
+
|
3 |
+
from axolotl.prompt_tokenizers import ShareGPTPromptTokenizingStrategy
|
4 |
+
from axolotl.prompters import PromptStyle, ShareGPTPrompter
|
5 |
+
|
6 |
+
|
7 |
+
def load(tokenizer, cfg):
|
8 |
+
return SimpleShareGPTPromptTokenizingStrategy(
|
9 |
+
ShareGPTPrompter(PromptStyle.CHAT.value),
|
10 |
+
tokenizer,
|
11 |
+
cfg.train_on_inputs,
|
12 |
+
cfg.sequence_len,
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
def load_guanaco(tokenizer, cfg):
|
17 |
+
return GuanacoShareGPTPromptTokenizingStrategy(
|
18 |
+
ShareGPTPrompter(PromptStyle.CHAT.value),
|
19 |
+
tokenizer,
|
20 |
+
cfg.train_on_inputs,
|
21 |
+
cfg.sequence_len,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
class SimpleShareGPTPromptTokenizingStrategy(ShareGPTPromptTokenizingStrategy):
|
26 |
+
"""
|
27 |
+
basic sharegpt strategy to grab conversations from the sample row
|
28 |
+
"""
|
29 |
+
|
30 |
+
def get_conversation_thread(self, prompt):
|
31 |
+
return prompt["conversations"]
|
32 |
+
|
33 |
+
|
34 |
+
class GuanacoShareGPTPromptTokenizingStrategy(ShareGPTPromptTokenizingStrategy):
|
35 |
+
"""
|
36 |
+
sharegpt strategy that remaps oasst data to sharegpt format
|
37 |
+
"""
|
38 |
+
|
39 |
+
def get_conversation_thread(self, prompt):
|
40 |
+
conversations = prompt["conversations"]
|
41 |
+
# remap role: prompter/assistant, text: ... => from: human/gpt, value: ...
|
42 |
+
role_map = {"prompter": "human", "assistant": "gpt"}
|
43 |
+
turns = [
|
44 |
+
{"from": role_map[t["role"]], "value": t["text"]} for t in conversations
|
45 |
+
]
|
46 |
+
return turns
|