refactor setup trainer so we can add more hooks (#773)
Browse files* refactor setup trainer so we can add more hooks
* Remove stray comma
- src/axolotl/core/__init__.py +0 -0
- src/axolotl/core/trainer_builder.py +689 -0
- src/axolotl/utils/callbacks.py +1 -1
- src/axolotl/utils/trainer.py +9 -531
src/axolotl/core/__init__.py
ADDED
File without changes
|
src/axolotl/core/trainer_builder.py
ADDED
@@ -0,0 +1,689 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Builder for the training args and trainer
|
3 |
+
"""
|
4 |
+
|
5 |
+
import abc
|
6 |
+
import importlib
|
7 |
+
import logging
|
8 |
+
import math
|
9 |
+
import os
|
10 |
+
import sys
|
11 |
+
from abc import abstractmethod
|
12 |
+
from dataclasses import dataclass, field
|
13 |
+
from functools import partial
|
14 |
+
from pathlib import Path
|
15 |
+
from typing import Optional, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import transformers
|
19 |
+
from datasets import Dataset
|
20 |
+
from torch.optim.lr_scheduler import OneCycleLR
|
21 |
+
from torch.utils.data import DataLoader, DistributedSampler, SequentialSampler
|
22 |
+
from transformers import EarlyStoppingCallback, Trainer, TrainingArguments
|
23 |
+
from transformers.trainer_pt_utils import SequentialDistributedSampler
|
24 |
+
|
25 |
+
from axolotl.monkeypatch.relora import ReLoRACallback, ReLoRAScheduler
|
26 |
+
from axolotl.utils.callbacks import (
|
27 |
+
EvalFirstStepCallback,
|
28 |
+
GPUStatsCallback,
|
29 |
+
SaveAxolotlConfigtoWandBCallback,
|
30 |
+
SaveBetterTransformerModelCallback,
|
31 |
+
bench_eval_callback_factory,
|
32 |
+
log_prediction_callback_factory,
|
33 |
+
)
|
34 |
+
from axolotl.utils.collators import DataCollatorForSeq2Seq
|
35 |
+
from axolotl.utils.dataloader import MultipackDistributedDataloader
|
36 |
+
from axolotl.utils.schedulers import get_cosine_schedule_with_quadratic_warmup
|
37 |
+
|
38 |
+
try:
|
39 |
+
import torch._dynamo # pylint: disable=ungrouped-imports
|
40 |
+
except ImportError:
|
41 |
+
pass
|
42 |
+
|
43 |
+
LOG = logging.getLogger("axolotl.core.trainer_builder")
|
44 |
+
|
45 |
+
|
46 |
+
@dataclass
|
47 |
+
class AxolotlTrainingArguments(TrainingArguments):
|
48 |
+
"""
|
49 |
+
Extend the base TrainingArguments for axolotl helpers
|
50 |
+
"""
|
51 |
+
|
52 |
+
lr_quadratic_warmup: bool = field(
|
53 |
+
default=False,
|
54 |
+
metadata={"help": "Use quadratic warmup for cosine scheduling."},
|
55 |
+
)
|
56 |
+
sample_packing: bool = field(
|
57 |
+
default=False,
|
58 |
+
metadata={"help": "Use sample packing for efficient training."},
|
59 |
+
)
|
60 |
+
eval_sample_packing: Optional[bool] = field(
|
61 |
+
default=None,
|
62 |
+
metadata={"help": "Use sample packing for efficient evals."},
|
63 |
+
)
|
64 |
+
sample_packing_efficiency: float = field(
|
65 |
+
default=1.0,
|
66 |
+
metadata={"help": "Sample packing efficiency for calculating batch length."},
|
67 |
+
)
|
68 |
+
max_seq_length: int = field(
|
69 |
+
default=2048,
|
70 |
+
metadata={"help": "The maximum sequence length the model can handle"},
|
71 |
+
)
|
72 |
+
sample_packing_seq_len_multiplier: int = field(
|
73 |
+
default=1,
|
74 |
+
metadata={"help": "the multiplier for the max len for packed sequences"},
|
75 |
+
)
|
76 |
+
relora_steps: Optional[int] = field(
|
77 |
+
default=None,
|
78 |
+
metadata={"help": "how often to reset for ReLoRA"},
|
79 |
+
)
|
80 |
+
relora_warmup_steps: Optional[int] = field(
|
81 |
+
default=None,
|
82 |
+
metadata={"help": "how many warmup steps to take after reset for ReLoRA"},
|
83 |
+
)
|
84 |
+
bench_split: Optional[str] = field(
|
85 |
+
default="eval", metadata={"help": "The benchmark split to run on"}
|
86 |
+
)
|
87 |
+
bench_dataset: Optional[str] = field(
|
88 |
+
default="pharaouk/dharma-1/dharma_1_mini.json",
|
89 |
+
metadata={
|
90 |
+
"help": "Benchmark dataset to use: options are `mmlu-zs`, `mmlu-fs`, or the full path to the dataset file"
|
91 |
+
},
|
92 |
+
)
|
93 |
+
do_bench_eval: Optional[bool] = field(
|
94 |
+
default=False, metadata={"help": "Whether to run the Benchmark evaluation."}
|
95 |
+
)
|
96 |
+
max_bench_samples: Optional[int] = field(
|
97 |
+
default=None,
|
98 |
+
metadata={
|
99 |
+
"help": "If set, only evaluates on `max_bench_samples` of the benchmark dataset."
|
100 |
+
},
|
101 |
+
)
|
102 |
+
bench_source_max_len: int = field(
|
103 |
+
default=2048, metadata={"help": "Maximum source sequence length for bench."}
|
104 |
+
)
|
105 |
+
|
106 |
+
|
107 |
+
class AxolotlTrainer(Trainer):
|
108 |
+
"""
|
109 |
+
Extend the base Trainer for axolotl helpers
|
110 |
+
"""
|
111 |
+
|
112 |
+
args = None # type: AxolotlTrainingArguments
|
113 |
+
|
114 |
+
def __init__(self, *args, bench_data_collator=None, **kwargs):
|
115 |
+
self.bench_data_collator = bench_data_collator
|
116 |
+
super().__init__(*args, **kwargs)
|
117 |
+
|
118 |
+
def create_scheduler(
|
119 |
+
self, num_training_steps: int, optimizer: torch.optim.Optimizer = None
|
120 |
+
):
|
121 |
+
"""
|
122 |
+
Setup the scheduler. The optimizer of the trainer must have been set up either before this method is called or
|
123 |
+
passed as an argument.
|
124 |
+
|
125 |
+
Args:
|
126 |
+
num_training_steps (int): The number of training steps to do.
|
127 |
+
optimizer (torch.optim.Optimizer): The training optimizer
|
128 |
+
"""
|
129 |
+
|
130 |
+
# fmt: off
|
131 |
+
if self.lr_scheduler is None: # type: ignore # pylint: disable=access-member-before-definition
|
132 |
+
# fmt: on
|
133 |
+
if (
|
134 |
+
self.args.lr_scheduler_type == "cosine"
|
135 |
+
and self.args.lr_quadratic_warmup is True
|
136 |
+
):
|
137 |
+
self.lr_scheduler = get_cosine_schedule_with_quadratic_warmup( # pylint: disable=attribute-defined-outside-init
|
138 |
+
optimizer,
|
139 |
+
num_warmup_steps=self.args.get_warmup_steps(num_training_steps),
|
140 |
+
num_training_steps=num_training_steps,
|
141 |
+
)
|
142 |
+
else:
|
143 |
+
return super().create_scheduler(num_training_steps, optimizer)
|
144 |
+
return self.lr_scheduler
|
145 |
+
|
146 |
+
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
|
147 |
+
if self.args.world_size > 1 and self.args.sample_packing:
|
148 |
+
return DistributedSampler(
|
149 |
+
self.train_dataset,
|
150 |
+
num_replicas=self.args.world_size,
|
151 |
+
rank=self.args.process_index,
|
152 |
+
seed=self.args.seed,
|
153 |
+
)
|
154 |
+
return super()._get_train_sampler()
|
155 |
+
|
156 |
+
def _get_eval_sampler(
|
157 |
+
self, eval_dataset: Dataset
|
158 |
+
) -> Optional[torch.utils.data.Sampler]:
|
159 |
+
if (
|
160 |
+
self.args.world_size > 1
|
161 |
+
and self.args.sample_packing
|
162 |
+
and self.args.eval_sample_packing is not False
|
163 |
+
):
|
164 |
+
return SequentialDistributedSampler(
|
165 |
+
eval_dataset,
|
166 |
+
num_replicas=self.args.world_size,
|
167 |
+
rank=self.args.process_index,
|
168 |
+
batch_size=self.args.per_device_eval_batch_size,
|
169 |
+
)
|
170 |
+
return super()._get_eval_sampler(eval_dataset)
|
171 |
+
|
172 |
+
def get_train_dataloader(self) -> Union[DataLoader, MultipackDistributedDataloader]:
|
173 |
+
if self.args.sample_packing:
|
174 |
+
train_sampler = self._get_train_sampler()
|
175 |
+
return self.accelerator.prepare(
|
176 |
+
MultipackDistributedDataloader(
|
177 |
+
self.train_dataset,
|
178 |
+
batch_size=self._train_batch_size,
|
179 |
+
seq_max_length=self.args.max_seq_length,
|
180 |
+
collate_fn=self.data_collator,
|
181 |
+
sampler=train_sampler,
|
182 |
+
packing_efficiency_estimate=self.args.sample_packing_efficiency,
|
183 |
+
sample_packing_seq_len_multiplier=self.args.sample_packing_seq_len_multiplier,
|
184 |
+
device_count=int(os.environ.get("WORLD_SIZE", 1)),
|
185 |
+
)
|
186 |
+
)
|
187 |
+
return super().get_train_dataloader()
|
188 |
+
|
189 |
+
def get_eval_dataloader(
|
190 |
+
self, eval_dataset: Optional[Dataset] = None
|
191 |
+
) -> Union[DataLoader, MultipackDistributedDataloader]:
|
192 |
+
if self.args.sample_packing and self.args.eval_sample_packing is not False:
|
193 |
+
eval_dataset = (
|
194 |
+
eval_dataset if eval_dataset is not None else self.eval_dataset
|
195 |
+
)
|
196 |
+
|
197 |
+
eval_sampler = self._get_eval_sampler(eval_dataset)
|
198 |
+
return self.accelerator.prepare(
|
199 |
+
MultipackDistributedDataloader(
|
200 |
+
eval_dataset,
|
201 |
+
batch_size=self.args.eval_batch_size,
|
202 |
+
seq_max_length=self.args.max_seq_length,
|
203 |
+
collate_fn=self.data_collator,
|
204 |
+
sampler=eval_sampler,
|
205 |
+
packing_efficiency_estimate=self.args.sample_packing_efficiency,
|
206 |
+
sample_packing_seq_len_multiplier=self.args.eval_batch_size,
|
207 |
+
device_count=int(os.environ.get("WORLD_SIZE", 1)),
|
208 |
+
)
|
209 |
+
)
|
210 |
+
return super().get_eval_dataloader(eval_dataset)
|
211 |
+
|
212 |
+
def _get_bench_sampler(
|
213 |
+
self, bench_dataset: Dataset
|
214 |
+
) -> Optional[torch.utils.data.Sampler]:
|
215 |
+
if self.args.world_size <= 1:
|
216 |
+
return SequentialSampler(bench_dataset)
|
217 |
+
return None
|
218 |
+
|
219 |
+
def get_bench_dataloader(
|
220 |
+
self,
|
221 |
+
bench_dataset: Dataset,
|
222 |
+
) -> Union[DataLoader, MultipackDistributedDataloader]:
|
223 |
+
dataloader_params = {
|
224 |
+
"batch_size": self.args.eval_batch_size,
|
225 |
+
"collate_fn": self.bench_data_collator,
|
226 |
+
"num_workers": self.args.dataloader_num_workers,
|
227 |
+
"pin_memory": self.args.dataloader_pin_memory,
|
228 |
+
}
|
229 |
+
|
230 |
+
if not isinstance(bench_dataset, torch.utils.data.IterableDataset):
|
231 |
+
dataloader_params["sampler"] = self._get_bench_sampler(bench_dataset)
|
232 |
+
dataloader_params["drop_last"] = self.args.dataloader_drop_last
|
233 |
+
|
234 |
+
return DataLoader(bench_dataset, **dataloader_params)
|
235 |
+
# return self.accelerator.prepare(DataLoader(bench_dataset, **dataloader_params))
|
236 |
+
|
237 |
+
def compute_loss(self, model, inputs, return_outputs=False):
|
238 |
+
# use one's weighted cross entropy loss calc
|
239 |
+
# if self.args.sample_packing:
|
240 |
+
# labels = inputs.pop("labels")
|
241 |
+
# outputs = model(**inputs)
|
242 |
+
# loss = trainer_weighted_loss(outputs, labels, shift_labels=True)
|
243 |
+
# return (loss, outputs) if return_outputs else loss
|
244 |
+
return super().compute_loss(model, inputs, return_outputs=return_outputs)
|
245 |
+
|
246 |
+
|
247 |
+
class OneCycleLRSchedulerTrainer(AxolotlTrainer):
|
248 |
+
"""
|
249 |
+
Trainer subclass that uses the OneCycleLR scheduler
|
250 |
+
"""
|
251 |
+
|
252 |
+
def __init__(self, *args, **kwargs):
|
253 |
+
super().__init__(*args, **kwargs)
|
254 |
+
self.lr_scheduler = None
|
255 |
+
|
256 |
+
def create_scheduler(
|
257 |
+
self,
|
258 |
+
num_training_steps: int,
|
259 |
+
optimizer: Optional[torch.optim.Optimizer] = None,
|
260 |
+
):
|
261 |
+
optimizer = self.optimizer if optimizer is None else optimizer
|
262 |
+
num_warmup_steps = self.args.get_warmup_steps(num_training_steps)
|
263 |
+
pct_start = num_warmup_steps / num_training_steps
|
264 |
+
|
265 |
+
self.lr_scheduler = OneCycleLR(
|
266 |
+
optimizer,
|
267 |
+
max_lr=self.args.learning_rate,
|
268 |
+
total_steps=num_training_steps,
|
269 |
+
pct_start=pct_start,
|
270 |
+
div_factor=6,
|
271 |
+
)
|
272 |
+
|
273 |
+
return self.lr_scheduler
|
274 |
+
|
275 |
+
|
276 |
+
class ReLoRATrainer(AxolotlTrainer):
|
277 |
+
"""
|
278 |
+
Trainer subclass that uses the OneCycleLR scheduler
|
279 |
+
"""
|
280 |
+
|
281 |
+
def __init__(self, *args, **kwargs):
|
282 |
+
super().__init__(*args, **kwargs)
|
283 |
+
self.lr_scheduler = None
|
284 |
+
|
285 |
+
def create_scheduler(
|
286 |
+
self,
|
287 |
+
num_training_steps: int,
|
288 |
+
optimizer: Optional[torch.optim.Optimizer] = None,
|
289 |
+
):
|
290 |
+
optimizer = self.optimizer if optimizer is None else optimizer
|
291 |
+
lr_scheduler = super().create_scheduler(num_training_steps, optimizer)
|
292 |
+
|
293 |
+
if self.args.relora_steps:
|
294 |
+
warmup_steps = (
|
295 |
+
self.args.relora_warmup_steps if self.args.relora_warmup_steps else 10
|
296 |
+
)
|
297 |
+
self.lr_scheduler = ReLoRAScheduler(
|
298 |
+
optimizer,
|
299 |
+
lr_scheduler,
|
300 |
+
self.args.relora_steps,
|
301 |
+
warmup_steps,
|
302 |
+
)
|
303 |
+
else:
|
304 |
+
self.lr_scheduler = lr_scheduler
|
305 |
+
|
306 |
+
return self.lr_scheduler
|
307 |
+
|
308 |
+
|
309 |
+
class TrainerBuilderBase(abc.ABC):
|
310 |
+
"""
|
311 |
+
Base class for trainer builder
|
312 |
+
"""
|
313 |
+
|
314 |
+
_train_dataset = None
|
315 |
+
_eval_dataset = None
|
316 |
+
|
317 |
+
def __init__(self, cfg, model, tokenizer):
|
318 |
+
self.cfg = cfg
|
319 |
+
self.model = model
|
320 |
+
self.tokenizer = tokenizer
|
321 |
+
|
322 |
+
@property
|
323 |
+
def train_dataset(self):
|
324 |
+
return self._train_dataset
|
325 |
+
|
326 |
+
@train_dataset.setter
|
327 |
+
def train_dataset(self, dataset):
|
328 |
+
self._train_dataset = dataset
|
329 |
+
|
330 |
+
@property
|
331 |
+
def eval_dataset(self):
|
332 |
+
return self._eval_dataset
|
333 |
+
|
334 |
+
@eval_dataset.setter
|
335 |
+
def eval_dataset(self, dataset):
|
336 |
+
self._eval_dataset = dataset
|
337 |
+
|
338 |
+
@abstractmethod
|
339 |
+
def build(self, total_num_steps):
|
340 |
+
pass
|
341 |
+
|
342 |
+
@abstractmethod
|
343 |
+
def get_callbacks(self):
|
344 |
+
pass
|
345 |
+
|
346 |
+
@abstractmethod
|
347 |
+
def get_post_trainer_create_callbacks(self, trainer):
|
348 |
+
"""
|
349 |
+
Callbacks added after the trainer is created, usually b/c these need access to the trainer
|
350 |
+
"""
|
351 |
+
|
352 |
+
|
353 |
+
class HFCausalTrainerBuilder(TrainerBuilderBase):
|
354 |
+
"""
|
355 |
+
Build the HuggingFace training args/trainer for Causal models
|
356 |
+
"""
|
357 |
+
|
358 |
+
def hook_pre_create_training_args(self, training_arguments_kwargs):
|
359 |
+
# TODO
|
360 |
+
return training_arguments_kwargs
|
361 |
+
|
362 |
+
def hook_post_create_training_args(self, training_arguments):
|
363 |
+
# TODO
|
364 |
+
return training_arguments
|
365 |
+
|
366 |
+
def hook_pre_create_trainer(self, trainer_kwargs, trainer_cls):
|
367 |
+
# TODO
|
368 |
+
return trainer_kwargs, trainer_cls
|
369 |
+
|
370 |
+
def hook_post_create_trainer(self, trainer):
|
371 |
+
# TODO
|
372 |
+
return trainer
|
373 |
+
|
374 |
+
def get_callbacks(self):
|
375 |
+
callbacks = []
|
376 |
+
callbacks.append(GPUStatsCallback(self.cfg))
|
377 |
+
callbacks.append(EvalFirstStepCallback)
|
378 |
+
|
379 |
+
if self.cfg.relora_steps:
|
380 |
+
callbacks.append(ReLoRACallback(self.cfg))
|
381 |
+
|
382 |
+
if (
|
383 |
+
hasattr(self.model, "use_bettertransformer")
|
384 |
+
and self.model.use_bettertransformer is True
|
385 |
+
):
|
386 |
+
callbacks.append(SaveBetterTransformerModelCallback)
|
387 |
+
|
388 |
+
if self.cfg.use_wandb:
|
389 |
+
callbacks.append(
|
390 |
+
SaveAxolotlConfigtoWandBCallback(self.cfg.axolotl_config_path)
|
391 |
+
)
|
392 |
+
|
393 |
+
return callbacks
|
394 |
+
|
395 |
+
def get_post_trainer_create_callbacks(self, trainer):
|
396 |
+
callbacks = []
|
397 |
+
if self.cfg.use_wandb and self.cfg.eval_table_size > 0:
|
398 |
+
LogPredictionCallback = log_prediction_callback_factory(
|
399 |
+
trainer, self.tokenizer
|
400 |
+
)
|
401 |
+
callbacks.append(LogPredictionCallback(self.cfg))
|
402 |
+
|
403 |
+
if self.cfg.do_bench_eval:
|
404 |
+
callbacks.append(bench_eval_callback_factory(trainer, self.tokenizer))
|
405 |
+
|
406 |
+
if self.cfg.early_stopping_patience:
|
407 |
+
early_stop_cb = EarlyStoppingCallback(
|
408 |
+
self.cfg.early_stopping_patience,
|
409 |
+
)
|
410 |
+
callbacks.append(early_stop_cb)
|
411 |
+
|
412 |
+
return callbacks
|
413 |
+
|
414 |
+
def _get_trainer_cls(self):
|
415 |
+
if self.cfg.lr_scheduler == "one_cycle" and (
|
416 |
+
self.cfg.fsdp or self.cfg.adapter == "qlora"
|
417 |
+
):
|
418 |
+
return OneCycleLRSchedulerTrainer
|
419 |
+
if self.cfg.relora_steps:
|
420 |
+
return ReLoRATrainer
|
421 |
+
return AxolotlTrainer
|
422 |
+
|
423 |
+
def build(self, total_num_steps):
|
424 |
+
warmup_steps = (
|
425 |
+
self.cfg.warmup_steps
|
426 |
+
if self.cfg.warmup_steps is not None
|
427 |
+
else min(int(0.03 * total_num_steps), 100)
|
428 |
+
)
|
429 |
+
logging_steps = (
|
430 |
+
self.cfg.logging_steps
|
431 |
+
if self.cfg.logging_steps is not None
|
432 |
+
else max(min(int(0.005 * total_num_steps), 10), 1)
|
433 |
+
)
|
434 |
+
|
435 |
+
training_arguments_kwargs = {}
|
436 |
+
if self.cfg.bf16 == "full":
|
437 |
+
training_arguments_kwargs["bf16_full_eval"] = True
|
438 |
+
else:
|
439 |
+
training_arguments_kwargs["bf16"] = self.cfg.bf16
|
440 |
+
training_arguments_kwargs["fp16"] = (
|
441 |
+
self.cfg.fp16 and not self.cfg.bf16
|
442 |
+
) or False
|
443 |
+
training_arguments_kwargs["tf32"] = self.cfg.tf32
|
444 |
+
training_arguments_kwargs["warmup_steps"] = warmup_steps
|
445 |
+
training_arguments_kwargs["logging_steps"] = logging_steps
|
446 |
+
|
447 |
+
if self.cfg.seed:
|
448 |
+
training_arguments_kwargs["seed"] = self.cfg.seed
|
449 |
+
|
450 |
+
if self.cfg.gradient_checkpointing:
|
451 |
+
training_arguments_kwargs[
|
452 |
+
"gradient_checkpointing"
|
453 |
+
] = self.cfg.gradient_checkpointing
|
454 |
+
if self.cfg.fsdp:
|
455 |
+
training_arguments_kwargs["fsdp"] = self.cfg.fsdp
|
456 |
+
if self.cfg.fsdp_config:
|
457 |
+
training_arguments_kwargs["fsdp_config"] = dict(self.cfg.fsdp_config)
|
458 |
+
|
459 |
+
# deepspeed
|
460 |
+
if self.cfg.deepspeed:
|
461 |
+
training_arguments_kwargs["deepspeed"] = self.cfg.deepspeed
|
462 |
+
|
463 |
+
if self.cfg.lr_quadratic_warmup is not None:
|
464 |
+
training_arguments_kwargs[
|
465 |
+
"lr_quadratic_warmup"
|
466 |
+
] = self.cfg.lr_quadratic_warmup
|
467 |
+
|
468 |
+
if self.cfg.adam_beta1:
|
469 |
+
training_arguments_kwargs["adam_beta1"] = self.cfg.adam_beta1
|
470 |
+
if self.cfg.adam_beta2:
|
471 |
+
training_arguments_kwargs["adam_beta2"] = self.cfg.adam_beta2
|
472 |
+
if self.cfg.adam_epsilon:
|
473 |
+
training_arguments_kwargs["adam_epsilon"] = self.cfg.adam_epsilon
|
474 |
+
if self.cfg.max_grad_norm:
|
475 |
+
training_arguments_kwargs["max_grad_norm"] = self.cfg.max_grad_norm
|
476 |
+
|
477 |
+
if self.cfg.hub_model_id:
|
478 |
+
training_arguments_kwargs["hub_model_id"] = self.cfg.hub_model_id
|
479 |
+
training_arguments_kwargs["push_to_hub"] = True
|
480 |
+
training_arguments_kwargs["hub_private_repo"] = True
|
481 |
+
|
482 |
+
if self.cfg.hub_strategy:
|
483 |
+
training_arguments_kwargs["hub_strategy"] = self.cfg.hub_strategy
|
484 |
+
|
485 |
+
if self.cfg.save_safetensors:
|
486 |
+
training_arguments_kwargs["save_safetensors"] = self.cfg.save_safetensors
|
487 |
+
|
488 |
+
if self.cfg.sample_packing_eff_est:
|
489 |
+
training_arguments_kwargs[
|
490 |
+
"sample_packing_efficiency"
|
491 |
+
] = self.cfg.sample_packing_eff_est
|
492 |
+
|
493 |
+
if self.cfg.eval_steps:
|
494 |
+
training_arguments_kwargs["evaluation_strategy"] = "steps"
|
495 |
+
training_arguments_kwargs["eval_steps"] = self.cfg.eval_steps
|
496 |
+
elif self.cfg.evaluation_strategy:
|
497 |
+
training_arguments_kwargs[
|
498 |
+
"evaluation_strategy"
|
499 |
+
] = self.cfg.evaluation_strategy
|
500 |
+
elif self.cfg.val_set_size == 0:
|
501 |
+
# no eval set, so don't eval
|
502 |
+
training_arguments_kwargs["evaluation_strategy"] = "no"
|
503 |
+
else:
|
504 |
+
# we have an eval set, but no steps defined, default to use epoch
|
505 |
+
training_arguments_kwargs["evaluation_strategy"] = "epoch"
|
506 |
+
|
507 |
+
if self.cfg.save_steps:
|
508 |
+
training_arguments_kwargs["save_strategy"] = "steps"
|
509 |
+
training_arguments_kwargs["save_steps"] = self.cfg.save_steps
|
510 |
+
elif self.cfg.save_strategy:
|
511 |
+
training_arguments_kwargs["save_strategy"] = self.cfg.save_strategy
|
512 |
+
else:
|
513 |
+
# default to saving each epoch if not defined
|
514 |
+
training_arguments_kwargs["save_strategy"] = "epoch"
|
515 |
+
|
516 |
+
if self.cfg.do_bench_eval:
|
517 |
+
training_arguments_kwargs["do_bench_eval"] = self.cfg.do_bench_eval
|
518 |
+
if self.cfg.bench_dataset:
|
519 |
+
training_arguments_kwargs["bench_dataset"] = self.cfg.bench_dataset
|
520 |
+
if self.cfg.metric_for_best_model:
|
521 |
+
training_arguments_kwargs[
|
522 |
+
"metric_for_best_model"
|
523 |
+
] = self.cfg.metric_for_best_model
|
524 |
+
if self.cfg.greater_is_better:
|
525 |
+
training_arguments_kwargs["greater_is_better"] = self.cfg.greater_is_better
|
526 |
+
|
527 |
+
if self.cfg.torch_compile:
|
528 |
+
if torch.__version__ < "2.1.0": # pylint: disable=protected-access
|
529 |
+
LOG.warning("torch>=2.1.0 required for torch_compile to work properly")
|
530 |
+
elif torch._dynamo: # pylint: disable=protected-access
|
531 |
+
torch._dynamo.config.suppress_errors = ( # pylint: disable=protected-access
|
532 |
+
True
|
533 |
+
)
|
534 |
+
training_arguments_kwargs["torch_compile"] = self.cfg.torch_compile
|
535 |
+
if self.cfg.torch_compile_backend:
|
536 |
+
training_arguments_kwargs[
|
537 |
+
"torch_compile_backend"
|
538 |
+
] = self.cfg.torch_compile_backend
|
539 |
+
|
540 |
+
# DDP Config
|
541 |
+
if self.cfg.ddp_timeout:
|
542 |
+
training_arguments_kwargs["ddp_timeout"] = self.cfg.ddp_timeout
|
543 |
+
# see https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html
|
544 |
+
if self.cfg.ddp_bucket_cap_mb:
|
545 |
+
training_arguments_kwargs["ddp_bucket_cap_mb"] = self.cfg.ddp_bucket_cap_mb
|
546 |
+
if self.cfg.ddp_broadcast_buffers is not None:
|
547 |
+
training_arguments_kwargs[
|
548 |
+
"ddp_broadcast_buffers"
|
549 |
+
] = self.cfg.ddp_broadcast_buffers
|
550 |
+
|
551 |
+
# these are all the "standard" kwargs that are def used
|
552 |
+
training_arguments_kwargs["max_steps"] = (
|
553 |
+
total_num_steps if self.cfg.max_steps else -1
|
554 |
+
)
|
555 |
+
training_arguments_kwargs["max_seq_length"] = self.cfg.sequence_len
|
556 |
+
training_arguments_kwargs[
|
557 |
+
"per_device_train_batch_size"
|
558 |
+
] = self.cfg.micro_batch_size
|
559 |
+
training_arguments_kwargs[
|
560 |
+
"per_device_eval_batch_size"
|
561 |
+
] = self.cfg.eval_batch_size
|
562 |
+
training_arguments_kwargs[
|
563 |
+
"gradient_accumulation_steps"
|
564 |
+
] = self.cfg.gradient_accumulation_steps
|
565 |
+
training_arguments_kwargs[
|
566 |
+
"eval_accumulation_steps"
|
567 |
+
] = self.cfg.gradient_accumulation_steps
|
568 |
+
training_arguments_kwargs["num_train_epochs"] = self.cfg.num_epochs
|
569 |
+
training_arguments_kwargs["learning_rate"] = self.cfg.learning_rate
|
570 |
+
training_arguments_kwargs["output_dir"] = self.cfg.output_dir
|
571 |
+
training_arguments_kwargs["save_total_limit"] = (
|
572 |
+
self.cfg.save_total_limit if self.cfg.save_total_limit else 4
|
573 |
+
)
|
574 |
+
training_arguments_kwargs["load_best_model_at_end"] = (
|
575 |
+
(
|
576 |
+
self.cfg.load_best_model_at_end is not False
|
577 |
+
or self.cfg.early_stopping_patience
|
578 |
+
)
|
579 |
+
and self.cfg.val_set_size > 0
|
580 |
+
and self.cfg.save_steps
|
581 |
+
and self.cfg.eval_steps
|
582 |
+
and self.cfg.save_steps % self.cfg.eval_steps == 0
|
583 |
+
) or False
|
584 |
+
training_arguments_kwargs["ddp_find_unused_parameters"] = (
|
585 |
+
False if self.cfg.ddp else None
|
586 |
+
)
|
587 |
+
training_arguments_kwargs["group_by_length"] = self.cfg.group_by_length
|
588 |
+
training_arguments_kwargs["report_to"] = "wandb" if self.cfg.use_wandb else None
|
589 |
+
training_arguments_kwargs["run_name"] = (
|
590 |
+
self.cfg.wandb_run_id if self.cfg.use_wandb else None
|
591 |
+
)
|
592 |
+
training_arguments_kwargs["optim"] = (
|
593 |
+
self.cfg.optimizer if self.cfg.optimizer else "adamw_hf"
|
594 |
+
)
|
595 |
+
training_arguments_kwargs["lr_scheduler_type"] = (
|
596 |
+
self.cfg.lr_scheduler
|
597 |
+
if self.cfg.lr_scheduler
|
598 |
+
and self.cfg.lr_scheduler not in ("one_cycle", "log_sweep")
|
599 |
+
else "cosine"
|
600 |
+
)
|
601 |
+
training_arguments_kwargs["weight_decay"] = (
|
602 |
+
self.cfg.weight_decay if self.cfg.weight_decay is not None else 0.0
|
603 |
+
)
|
604 |
+
training_arguments_kwargs["sample_packing"] = (
|
605 |
+
self.cfg.sample_packing if self.cfg.sample_packing else False
|
606 |
+
)
|
607 |
+
training_arguments_kwargs["eval_sample_packing"] = (
|
608 |
+
self.cfg.sample_packing if self.cfg.sample_packing else False
|
609 |
+
)
|
610 |
+
training_arguments_kwargs[
|
611 |
+
"sample_packing_seq_len_multiplier"
|
612 |
+
] = self.cfg.micro_batch_size
|
613 |
+
training_arguments_kwargs["relora_steps"] = self.cfg.relora_steps
|
614 |
+
training_arguments_kwargs["relora_warmup_steps"] = self.cfg.relora_warmup_steps
|
615 |
+
training_arguments_kwargs = self.hook_pre_create_training_args(
|
616 |
+
training_arguments_kwargs
|
617 |
+
)
|
618 |
+
training_args = (
|
619 |
+
AxolotlTrainingArguments( # pylint: disable=unexpected-keyword-arg
|
620 |
+
**training_arguments_kwargs,
|
621 |
+
)
|
622 |
+
)
|
623 |
+
training_args = self.hook_post_create_training_args(training_args)
|
624 |
+
trainer_kwargs = {}
|
625 |
+
|
626 |
+
if self.cfg.optimizer == "adamw_anyprecision":
|
627 |
+
if Path(self.cfg.torchdistx_path).exists():
|
628 |
+
sys.path.append(self.cfg.torchdistx_path)
|
629 |
+
importlib.import_module("torchdistx")
|
630 |
+
|
631 |
+
data_collator_kwargs = {
|
632 |
+
"padding": True, # True/"longest" is the default
|
633 |
+
}
|
634 |
+
if self.cfg.pad_to_sequence_len:
|
635 |
+
data_collator_kwargs["pad_to_multiple_of"] = 64 * math.ceil(
|
636 |
+
self.cfg.sequence_len / 64
|
637 |
+
)
|
638 |
+
else:
|
639 |
+
# A100 is best at 64, while others at 8. Let's use the larger so we don't have to check
|
640 |
+
# https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
|
641 |
+
data_collator_kwargs["pad_to_multiple_of"] = 64
|
642 |
+
|
643 |
+
if self.cfg.is_llama_derived_model and self.cfg.landmark_attention:
|
644 |
+
from axolotl.monkeypatch.llama_landmark_attn import (
|
645 |
+
add_mem_tokens,
|
646 |
+
get_mem_id,
|
647 |
+
set_model_mem_id,
|
648 |
+
)
|
649 |
+
|
650 |
+
set_model_mem_id(self.model, self.tokenizer)
|
651 |
+
|
652 |
+
LOG.info("Adding landmark attention tokens to dataset")
|
653 |
+
|
654 |
+
for dataset in [self.train_dataset, self.eval_dataset]:
|
655 |
+
dataset = dataset.map(
|
656 |
+
partial(
|
657 |
+
add_mem_tokens, mem_freq=50, mem_id=get_mem_id(self.tokenizer)
|
658 |
+
),
|
659 |
+
batched=False,
|
660 |
+
num_proc=32,
|
661 |
+
)
|
662 |
+
|
663 |
+
trainer_cls = self._get_trainer_cls()
|
664 |
+
trainer_kwargs, trainer_cls = self.hook_pre_create_trainer(
|
665 |
+
trainer_kwargs, trainer_cls
|
666 |
+
)
|
667 |
+
trainer = trainer_cls(
|
668 |
+
model=self.model,
|
669 |
+
train_dataset=self.train_dataset,
|
670 |
+
eval_dataset=self.eval_dataset,
|
671 |
+
args=training_args,
|
672 |
+
data_collator=DataCollatorForSeq2Seq(
|
673 |
+
self.tokenizer,
|
674 |
+
return_tensors="pt",
|
675 |
+
**data_collator_kwargs,
|
676 |
+
),
|
677 |
+
bench_data_collator=transformers.DataCollatorForSeq2Seq(
|
678 |
+
self.tokenizer,
|
679 |
+
return_tensors="pt",
|
680 |
+
**data_collator_kwargs,
|
681 |
+
),
|
682 |
+
callbacks=self.get_callbacks(),
|
683 |
+
**trainer_kwargs,
|
684 |
+
)
|
685 |
+
trainer = self.hook_post_create_trainer(trainer)
|
686 |
+
for callback in self.get_post_trainer_create_callbacks(trainer):
|
687 |
+
trainer.add_callback(callback)
|
688 |
+
|
689 |
+
return trainer
|
src/axolotl/utils/callbacks.py
CHANGED
@@ -37,7 +37,7 @@ from axolotl.utils.distributed import (
|
|
37 |
)
|
38 |
|
39 |
if TYPE_CHECKING:
|
40 |
-
from axolotl.
|
41 |
|
42 |
LOG = logging.getLogger("axolotl.callbacks")
|
43 |
IGNORE_INDEX = -100
|
|
|
37 |
)
|
38 |
|
39 |
if TYPE_CHECKING:
|
40 |
+
from axolotl.core.trainer_builder import AxolotlTrainingArguments
|
41 |
|
42 |
LOG = logging.getLogger("axolotl.callbacks")
|
43 |
IGNORE_INDEX = -100
|
src/axolotl/utils/trainer.py
CHANGED
@@ -1,40 +1,19 @@
|
|
1 |
"""Module containing the Trainer class and related functions"""
|
2 |
-
import importlib
|
3 |
import logging
|
4 |
import math
|
5 |
import os
|
6 |
-
import sys
|
7 |
from contextlib import contextmanager
|
8 |
-
from dataclasses import dataclass, field
|
9 |
from functools import partial
|
10 |
-
from
|
11 |
-
from typing import List, Optional, Union
|
12 |
|
13 |
import numpy as np
|
14 |
import torch
|
15 |
import torch.cuda
|
16 |
import torch.distributed as dist
|
17 |
-
import
|
18 |
-
from
|
19 |
-
|
20 |
-
from
|
21 |
-
DataLoader,
|
22 |
-
DistributedSampler,
|
23 |
-
RandomSampler,
|
24 |
-
SequentialSampler,
|
25 |
-
)
|
26 |
-
from transformers import EarlyStoppingCallback, Trainer, TrainingArguments
|
27 |
-
from transformers.trainer_pt_utils import SequentialDistributedSampler
|
28 |
-
|
29 |
-
from axolotl.monkeypatch.relora import ReLoRACallback, ReLoRAScheduler
|
30 |
-
from axolotl.utils.callbacks import (
|
31 |
-
EvalFirstStepCallback,
|
32 |
-
GPUStatsCallback,
|
33 |
-
SaveAxolotlConfigtoWandBCallback,
|
34 |
-
SaveBetterTransformerModelCallback,
|
35 |
-
bench_eval_callback_factory,
|
36 |
-
log_prediction_callback_factory,
|
37 |
-
)
|
38 |
from axolotl.utils.collators import DataCollatorForSeq2Seq
|
39 |
from axolotl.utils.dataloader import MultipackDistributedDataloader
|
40 |
from axolotl.utils.distributed import (
|
@@ -43,7 +22,6 @@ from axolotl.utils.distributed import (
|
|
43 |
reduce_and_broadcast,
|
44 |
zero_first,
|
45 |
)
|
46 |
-
from axolotl.utils.schedulers import get_cosine_schedule_with_quadratic_warmup
|
47 |
|
48 |
LOG = logging.getLogger("axolotl")
|
49 |
|
@@ -110,269 +88,6 @@ def trainer_weighted_loss(model_output, labels, shift_labels=True):
|
|
110 |
return weighted_cross_entropy(logits, labels, weights)
|
111 |
|
112 |
|
113 |
-
@dataclass
|
114 |
-
class AxolotlTrainingArguments(TrainingArguments):
|
115 |
-
"""
|
116 |
-
Extend the base TrainingArguments for axolotl helpers
|
117 |
-
"""
|
118 |
-
|
119 |
-
lr_quadratic_warmup: bool = field(
|
120 |
-
default=False,
|
121 |
-
metadata={"help": "Use quadratic warmup for cosine scheduling."},
|
122 |
-
)
|
123 |
-
sample_packing: bool = field(
|
124 |
-
default=False,
|
125 |
-
metadata={"help": "Use sample packing for efficient training."},
|
126 |
-
)
|
127 |
-
eval_sample_packing: Optional[bool] = field(
|
128 |
-
default=None,
|
129 |
-
metadata={"help": "Use sample packing for efficient evals."},
|
130 |
-
)
|
131 |
-
sample_packing_efficiency: float = field(
|
132 |
-
default=1.0,
|
133 |
-
metadata={"help": "Sample packing efficiency for calculating batch length."},
|
134 |
-
)
|
135 |
-
max_seq_length: int = field(
|
136 |
-
default=2048,
|
137 |
-
metadata={"help": "The maximum sequence length the model can handle"},
|
138 |
-
)
|
139 |
-
sample_packing_seq_len_multiplier: int = field(
|
140 |
-
default=1,
|
141 |
-
metadata={"help": "the multiplier for the max len for packed sequences"},
|
142 |
-
)
|
143 |
-
relora_steps: Optional[int] = field(
|
144 |
-
default=None,
|
145 |
-
metadata={"help": "how often to reset for ReLoRA"},
|
146 |
-
)
|
147 |
-
relora_warmup_steps: Optional[int] = field(
|
148 |
-
default=None,
|
149 |
-
metadata={"help": "how many warmup steps to take after reset for ReLoRA"},
|
150 |
-
)
|
151 |
-
bench_split: Optional[str] = field(
|
152 |
-
default="eval", metadata={"help": "The benchmark split to run on"}
|
153 |
-
)
|
154 |
-
bench_dataset: Optional[str] = field(
|
155 |
-
default="pharaouk/dharma-1/dharma_1_mini.json",
|
156 |
-
metadata={
|
157 |
-
"help": "Benchmark dataset to use: options are `mmlu-zs`, `mmlu-fs`, or the full path to the dataset file"
|
158 |
-
},
|
159 |
-
)
|
160 |
-
do_bench_eval: Optional[bool] = field(
|
161 |
-
default=False, metadata={"help": "Whether to run the Benchmark evaluation."}
|
162 |
-
)
|
163 |
-
max_bench_samples: Optional[int] = field(
|
164 |
-
default=None,
|
165 |
-
metadata={
|
166 |
-
"help": "If set, only evaluates on `max_bench_samples` of the benchmark dataset."
|
167 |
-
},
|
168 |
-
)
|
169 |
-
bench_source_max_len: int = field(
|
170 |
-
default=2048, metadata={"help": "Maximum source sequence length for bench."}
|
171 |
-
)
|
172 |
-
|
173 |
-
|
174 |
-
class AxolotlTrainer(Trainer):
|
175 |
-
"""
|
176 |
-
Extend the base Trainer for axolotl helpers
|
177 |
-
"""
|
178 |
-
|
179 |
-
args = None # type: AxolotlTrainingArguments
|
180 |
-
|
181 |
-
def __init__(self, *args, bench_data_collator=None, **kwargs):
|
182 |
-
self.bench_data_collator = bench_data_collator
|
183 |
-
super().__init__(*args, **kwargs)
|
184 |
-
|
185 |
-
def create_scheduler(
|
186 |
-
self, num_training_steps: int, optimizer: torch.optim.Optimizer = None
|
187 |
-
):
|
188 |
-
"""
|
189 |
-
Setup the scheduler. The optimizer of the trainer must have been set up either before this method is called or
|
190 |
-
passed as an argument.
|
191 |
-
|
192 |
-
Args:
|
193 |
-
num_training_steps (int): The number of training steps to do.
|
194 |
-
optimizer (torch.optim.Optimizer): The training optimizer
|
195 |
-
"""
|
196 |
-
|
197 |
-
# fmt: off
|
198 |
-
if self.lr_scheduler is None: # type: ignore # pylint: disable=access-member-before-definition
|
199 |
-
# fmt: on
|
200 |
-
if (
|
201 |
-
self.args.lr_scheduler_type == "cosine"
|
202 |
-
and self.args.lr_quadratic_warmup is True
|
203 |
-
):
|
204 |
-
self.lr_scheduler = get_cosine_schedule_with_quadratic_warmup( # pylint: disable=attribute-defined-outside-init
|
205 |
-
optimizer,
|
206 |
-
num_warmup_steps=self.args.get_warmup_steps(num_training_steps),
|
207 |
-
num_training_steps=num_training_steps,
|
208 |
-
)
|
209 |
-
else:
|
210 |
-
return super().create_scheduler(num_training_steps, optimizer)
|
211 |
-
return self.lr_scheduler
|
212 |
-
|
213 |
-
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
|
214 |
-
if self.args.world_size > 1 and self.args.sample_packing:
|
215 |
-
return DistributedSampler(
|
216 |
-
self.train_dataset,
|
217 |
-
num_replicas=self.args.world_size,
|
218 |
-
rank=self.args.process_index,
|
219 |
-
seed=self.args.seed,
|
220 |
-
)
|
221 |
-
return super()._get_train_sampler()
|
222 |
-
|
223 |
-
def _get_eval_sampler(
|
224 |
-
self, eval_dataset: Dataset
|
225 |
-
) -> Optional[torch.utils.data.Sampler]:
|
226 |
-
if (
|
227 |
-
self.args.world_size > 1
|
228 |
-
and self.args.sample_packing
|
229 |
-
and self.args.eval_sample_packing is not False
|
230 |
-
):
|
231 |
-
return SequentialDistributedSampler(
|
232 |
-
eval_dataset,
|
233 |
-
num_replicas=self.args.world_size,
|
234 |
-
rank=self.args.process_index,
|
235 |
-
batch_size=self.args.per_device_eval_batch_size,
|
236 |
-
)
|
237 |
-
return super()._get_eval_sampler(eval_dataset)
|
238 |
-
|
239 |
-
def get_train_dataloader(self) -> Union[DataLoader, MultipackDistributedDataloader]:
|
240 |
-
if self.args.sample_packing:
|
241 |
-
train_sampler = self._get_train_sampler()
|
242 |
-
return self.accelerator.prepare(
|
243 |
-
MultipackDistributedDataloader(
|
244 |
-
self.train_dataset,
|
245 |
-
batch_size=self._train_batch_size,
|
246 |
-
seq_max_length=self.args.max_seq_length,
|
247 |
-
collate_fn=self.data_collator,
|
248 |
-
sampler=train_sampler,
|
249 |
-
packing_efficiency_estimate=self.args.sample_packing_efficiency,
|
250 |
-
sample_packing_seq_len_multiplier=self.args.sample_packing_seq_len_multiplier,
|
251 |
-
device_count=int(os.environ.get("WORLD_SIZE", 1)),
|
252 |
-
)
|
253 |
-
)
|
254 |
-
return super().get_train_dataloader()
|
255 |
-
|
256 |
-
def get_eval_dataloader(
|
257 |
-
self, eval_dataset: Optional[Dataset] = None
|
258 |
-
) -> Union[DataLoader, MultipackDistributedDataloader]:
|
259 |
-
if self.args.sample_packing and self.args.eval_sample_packing is not False:
|
260 |
-
eval_dataset = (
|
261 |
-
eval_dataset if eval_dataset is not None else self.eval_dataset
|
262 |
-
)
|
263 |
-
|
264 |
-
eval_sampler = self._get_eval_sampler(eval_dataset)
|
265 |
-
return self.accelerator.prepare(
|
266 |
-
MultipackDistributedDataloader(
|
267 |
-
eval_dataset,
|
268 |
-
batch_size=self.args.eval_batch_size,
|
269 |
-
seq_max_length=self.args.max_seq_length,
|
270 |
-
collate_fn=self.data_collator,
|
271 |
-
sampler=eval_sampler,
|
272 |
-
packing_efficiency_estimate=self.args.sample_packing_efficiency,
|
273 |
-
sample_packing_seq_len_multiplier=self.args.eval_batch_size,
|
274 |
-
device_count=int(os.environ.get("WORLD_SIZE", 1)),
|
275 |
-
)
|
276 |
-
)
|
277 |
-
return super().get_eval_dataloader(eval_dataset)
|
278 |
-
|
279 |
-
def _get_bench_sampler(
|
280 |
-
self, bench_dataset: Dataset
|
281 |
-
) -> Optional[torch.utils.data.Sampler]:
|
282 |
-
if self.args.world_size <= 1:
|
283 |
-
return SequentialSampler(bench_dataset)
|
284 |
-
return None
|
285 |
-
|
286 |
-
def get_bench_dataloader(
|
287 |
-
self,
|
288 |
-
bench_dataset: Dataset,
|
289 |
-
) -> Union[DataLoader, MultipackDistributedDataloader]:
|
290 |
-
dataloader_params = {
|
291 |
-
"batch_size": self.args.eval_batch_size,
|
292 |
-
"collate_fn": self.bench_data_collator,
|
293 |
-
"num_workers": self.args.dataloader_num_workers,
|
294 |
-
"pin_memory": self.args.dataloader_pin_memory,
|
295 |
-
}
|
296 |
-
|
297 |
-
if not isinstance(bench_dataset, torch.utils.data.IterableDataset):
|
298 |
-
dataloader_params["sampler"] = self._get_bench_sampler(bench_dataset)
|
299 |
-
dataloader_params["drop_last"] = self.args.dataloader_drop_last
|
300 |
-
|
301 |
-
return DataLoader(bench_dataset, **dataloader_params)
|
302 |
-
# return self.accelerator.prepare(DataLoader(bench_dataset, **dataloader_params))
|
303 |
-
|
304 |
-
def compute_loss(self, model, inputs, return_outputs=False):
|
305 |
-
# use one's weighted cross entropy loss calc
|
306 |
-
# if self.args.sample_packing:
|
307 |
-
# labels = inputs.pop("labels")
|
308 |
-
# outputs = model(**inputs)
|
309 |
-
# loss = trainer_weighted_loss(outputs, labels, shift_labels=True)
|
310 |
-
# return (loss, outputs) if return_outputs else loss
|
311 |
-
return super().compute_loss(model, inputs, return_outputs=return_outputs)
|
312 |
-
|
313 |
-
|
314 |
-
class OneCycleLRSchedulerTrainer(AxolotlTrainer):
|
315 |
-
"""
|
316 |
-
Trainer subclass that uses the OneCycleLR scheduler
|
317 |
-
"""
|
318 |
-
|
319 |
-
def __init__(self, *args, **kwargs):
|
320 |
-
super().__init__(*args, **kwargs)
|
321 |
-
self.lr_scheduler = None
|
322 |
-
|
323 |
-
def create_scheduler(
|
324 |
-
self,
|
325 |
-
num_training_steps: int,
|
326 |
-
optimizer: Optional[torch.optim.Optimizer] = None,
|
327 |
-
):
|
328 |
-
optimizer = self.optimizer if optimizer is None else optimizer
|
329 |
-
num_warmup_steps = self.args.get_warmup_steps(num_training_steps)
|
330 |
-
pct_start = num_warmup_steps / num_training_steps
|
331 |
-
|
332 |
-
self.lr_scheduler = OneCycleLR(
|
333 |
-
optimizer,
|
334 |
-
max_lr=self.args.learning_rate,
|
335 |
-
total_steps=num_training_steps,
|
336 |
-
pct_start=pct_start,
|
337 |
-
div_factor=6,
|
338 |
-
)
|
339 |
-
|
340 |
-
return self.lr_scheduler
|
341 |
-
|
342 |
-
|
343 |
-
class ReLoRATrainer(AxolotlTrainer):
|
344 |
-
"""
|
345 |
-
Trainer subclass that uses the OneCycleLR scheduler
|
346 |
-
"""
|
347 |
-
|
348 |
-
def __init__(self, *args, **kwargs):
|
349 |
-
super().__init__(*args, **kwargs)
|
350 |
-
self.lr_scheduler = None
|
351 |
-
|
352 |
-
def create_scheduler(
|
353 |
-
self,
|
354 |
-
num_training_steps: int,
|
355 |
-
optimizer: Optional[torch.optim.Optimizer] = None,
|
356 |
-
):
|
357 |
-
optimizer = self.optimizer if optimizer is None else optimizer
|
358 |
-
lr_scheduler = super().create_scheduler(num_training_steps, optimizer)
|
359 |
-
|
360 |
-
if self.args.relora_steps:
|
361 |
-
warmup_steps = (
|
362 |
-
self.args.relora_warmup_steps if self.args.relora_warmup_steps else 10
|
363 |
-
)
|
364 |
-
self.lr_scheduler = ReLoRAScheduler(
|
365 |
-
optimizer,
|
366 |
-
lr_scheduler,
|
367 |
-
self.args.relora_steps,
|
368 |
-
warmup_steps,
|
369 |
-
)
|
370 |
-
else:
|
371 |
-
self.lr_scheduler = lr_scheduler
|
372 |
-
|
373 |
-
return self.lr_scheduler
|
374 |
-
|
375 |
-
|
376 |
def add_position_ids(sample):
|
377 |
sample_len = len(sample["input_ids"])
|
378 |
sample["position_ids"] = torch.arange(len(sample["input_ids"]))
|
@@ -550,245 +265,8 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer, total_num_
|
|
550 |
elif cfg.deepspeed:
|
551 |
os.environ["ACCELERATE_USE_DEEPSPEED"] = "true"
|
552 |
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
else min(int(0.03 * total_num_steps), 100)
|
557 |
-
)
|
558 |
-
logging_steps = (
|
559 |
-
cfg.logging_steps
|
560 |
-
if cfg.logging_steps is not None
|
561 |
-
else max(min(int(0.005 * total_num_steps), 10), 1)
|
562 |
-
)
|
563 |
-
|
564 |
-
training_arguments_kwargs = {}
|
565 |
-
if cfg.bf16 == "full":
|
566 |
-
training_arguments_kwargs["bf16_full_eval"] = True
|
567 |
-
else:
|
568 |
-
training_arguments_kwargs["bf16"] = cfg.bf16
|
569 |
-
training_arguments_kwargs["fp16"] = (cfg.fp16 and not cfg.bf16) or False
|
570 |
-
training_arguments_kwargs["tf32"] = cfg.tf32
|
571 |
-
training_arguments_kwargs["warmup_steps"] = warmup_steps
|
572 |
-
training_arguments_kwargs["logging_steps"] = logging_steps
|
573 |
-
|
574 |
-
if cfg.seed:
|
575 |
-
training_arguments_kwargs["seed"] = cfg.seed
|
576 |
-
|
577 |
-
if cfg.gradient_checkpointing:
|
578 |
-
training_arguments_kwargs["gradient_checkpointing"] = cfg.gradient_checkpointing
|
579 |
-
if cfg.fsdp:
|
580 |
-
training_arguments_kwargs["fsdp"] = cfg.fsdp
|
581 |
-
if cfg.fsdp_config:
|
582 |
-
training_arguments_kwargs["fsdp_config"] = dict(cfg.fsdp_config)
|
583 |
-
|
584 |
-
# deepspeed
|
585 |
-
if cfg.deepspeed:
|
586 |
-
training_arguments_kwargs["deepspeed"] = cfg.deepspeed
|
587 |
-
|
588 |
-
if cfg.lr_quadratic_warmup is not None:
|
589 |
-
training_arguments_kwargs["lr_quadratic_warmup"] = cfg.lr_quadratic_warmup
|
590 |
-
|
591 |
-
if cfg.adam_beta1:
|
592 |
-
training_arguments_kwargs["adam_beta1"] = cfg.adam_beta1
|
593 |
-
if cfg.adam_beta2:
|
594 |
-
training_arguments_kwargs["adam_beta2"] = cfg.adam_beta2
|
595 |
-
if cfg.adam_epsilon:
|
596 |
-
training_arguments_kwargs["adam_epsilon"] = cfg.adam_epsilon
|
597 |
-
if cfg.max_grad_norm:
|
598 |
-
training_arguments_kwargs["max_grad_norm"] = cfg.max_grad_norm
|
599 |
-
|
600 |
-
if cfg.hub_model_id:
|
601 |
-
training_arguments_kwargs["hub_model_id"] = cfg.hub_model_id
|
602 |
-
training_arguments_kwargs["push_to_hub"] = True
|
603 |
-
training_arguments_kwargs["hub_private_repo"] = True
|
604 |
-
|
605 |
-
if cfg.hub_strategy:
|
606 |
-
training_arguments_kwargs["hub_strategy"] = cfg.hub_strategy
|
607 |
-
|
608 |
-
if cfg.save_safetensors:
|
609 |
-
training_arguments_kwargs["save_safetensors"] = cfg.save_safetensors
|
610 |
-
|
611 |
-
if cfg.sample_packing_eff_est:
|
612 |
-
training_arguments_kwargs[
|
613 |
-
"sample_packing_efficiency"
|
614 |
-
] = cfg.sample_packing_eff_est
|
615 |
-
|
616 |
-
if cfg.eval_steps:
|
617 |
-
training_arguments_kwargs["evaluation_strategy"] = "steps"
|
618 |
-
training_arguments_kwargs["eval_steps"] = cfg.eval_steps
|
619 |
-
elif cfg.evaluation_strategy:
|
620 |
-
training_arguments_kwargs["evaluation_strategy"] = cfg.evaluation_strategy
|
621 |
-
elif cfg.val_set_size == 0:
|
622 |
-
# no eval set, so don't eval
|
623 |
-
training_arguments_kwargs["evaluation_strategy"] = "no"
|
624 |
-
else:
|
625 |
-
# we have an eval set, but no steps defined, default to use epoch
|
626 |
-
training_arguments_kwargs["evaluation_strategy"] = "epoch"
|
627 |
-
|
628 |
-
if cfg.save_steps:
|
629 |
-
training_arguments_kwargs["save_strategy"] = "steps"
|
630 |
-
training_arguments_kwargs["save_steps"] = cfg.save_steps
|
631 |
-
elif cfg.save_strategy:
|
632 |
-
training_arguments_kwargs["save_strategy"] = cfg.save_strategy
|
633 |
-
else:
|
634 |
-
# default to saving each epoch if not defined
|
635 |
-
training_arguments_kwargs["save_strategy"] = "epoch"
|
636 |
-
|
637 |
-
if cfg.do_bench_eval:
|
638 |
-
training_arguments_kwargs["do_bench_eval"] = cfg.do_bench_eval
|
639 |
-
if cfg.bench_dataset:
|
640 |
-
training_arguments_kwargs["bench_dataset"] = cfg.bench_dataset
|
641 |
-
if cfg.metric_for_best_model:
|
642 |
-
training_arguments_kwargs["metric_for_best_model"] = cfg.metric_for_best_model
|
643 |
-
if cfg.greater_is_better:
|
644 |
-
training_arguments_kwargs["greater_is_better"] = cfg.greater_is_better
|
645 |
-
|
646 |
-
if cfg.torch_compile:
|
647 |
-
if torch.__version__ < "2.1.0": # pylint: disable=protected-access
|
648 |
-
LOG.warning("torch>=2.1.0 required for torch_compile to work properly")
|
649 |
-
else:
|
650 |
-
import torch._dynamo # pylint: disable=redefined-outer-name
|
651 |
-
|
652 |
-
torch._dynamo.config.suppress_errors = ( # pylint: disable=protected-access
|
653 |
-
True
|
654 |
-
)
|
655 |
-
training_arguments_kwargs["torch_compile"] = cfg.torch_compile
|
656 |
-
if cfg.torch_compile_backend:
|
657 |
-
training_arguments_kwargs[
|
658 |
-
"torch_compile_backend"
|
659 |
-
] = cfg.torch_compile_backend
|
660 |
-
|
661 |
-
# DDP Config
|
662 |
-
if cfg.ddp_timeout:
|
663 |
-
training_arguments_kwargs["ddp_timeout"] = cfg.ddp_timeout
|
664 |
-
# see https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html
|
665 |
-
if cfg.ddp_bucket_cap_mb:
|
666 |
-
training_arguments_kwargs["ddp_bucket_cap_mb"] = cfg.ddp_bucket_cap_mb
|
667 |
-
if cfg.ddp_broadcast_buffers is not None:
|
668 |
-
training_arguments_kwargs["ddp_broadcast_buffers"] = cfg.ddp_broadcast_buffers
|
669 |
-
|
670 |
-
training_args = AxolotlTrainingArguments( # pylint: disable=unexpected-keyword-arg
|
671 |
-
max_steps=total_num_steps if cfg.max_steps else -1,
|
672 |
-
max_seq_length=cfg.sequence_len,
|
673 |
-
per_device_train_batch_size=cfg.micro_batch_size,
|
674 |
-
per_device_eval_batch_size=cfg.eval_batch_size,
|
675 |
-
gradient_accumulation_steps=cfg.gradient_accumulation_steps,
|
676 |
-
eval_accumulation_steps=cfg.gradient_accumulation_steps,
|
677 |
-
num_train_epochs=cfg.num_epochs,
|
678 |
-
learning_rate=cfg.learning_rate,
|
679 |
-
output_dir=cfg.output_dir,
|
680 |
-
save_total_limit=cfg.save_total_limit if cfg.save_total_limit else 4,
|
681 |
-
load_best_model_at_end=(
|
682 |
-
(cfg.load_best_model_at_end is not False or cfg.early_stopping_patience)
|
683 |
-
and cfg.val_set_size > 0
|
684 |
-
and cfg.save_steps
|
685 |
-
and cfg.eval_steps
|
686 |
-
and cfg.save_steps % cfg.eval_steps == 0
|
687 |
-
)
|
688 |
-
or False,
|
689 |
-
ddp_find_unused_parameters=False if cfg.ddp else None,
|
690 |
-
group_by_length=cfg.group_by_length,
|
691 |
-
report_to="wandb" if cfg.use_wandb else None,
|
692 |
-
run_name=cfg.wandb_run_id if cfg.use_wandb else None,
|
693 |
-
optim=cfg.optimizer if cfg.optimizer else "adamw_hf",
|
694 |
-
lr_scheduler_type=cfg.lr_scheduler
|
695 |
-
if cfg.lr_scheduler and cfg.lr_scheduler not in ("one_cycle", "log_sweep")
|
696 |
-
else "cosine",
|
697 |
-
weight_decay=cfg.weight_decay if cfg.weight_decay is not None else 0.0,
|
698 |
-
sample_packing=cfg.sample_packing if cfg.sample_packing else False,
|
699 |
-
eval_sample_packing=cfg.eval_sample_packing,
|
700 |
-
sample_packing_seq_len_multiplier=cfg.micro_batch_size,
|
701 |
-
relora_steps=cfg.relora_steps,
|
702 |
-
relora_warmup_steps=cfg.relora_warmup_steps,
|
703 |
-
**training_arguments_kwargs,
|
704 |
-
)
|
705 |
-
|
706 |
-
trainer_kwargs = {}
|
707 |
-
|
708 |
-
if cfg.optimizer == "adamw_anyprecision":
|
709 |
-
if Path(cfg.torchdistx_path).exists():
|
710 |
-
sys.path.append(cfg.torchdistx_path)
|
711 |
-
importlib.import_module("torchdistx")
|
712 |
-
|
713 |
-
callbacks = []
|
714 |
-
callbacks.append(GPUStatsCallback(cfg))
|
715 |
-
callbacks.append(EvalFirstStepCallback)
|
716 |
-
|
717 |
-
if cfg.relora_steps:
|
718 |
-
callbacks.append(ReLoRACallback(cfg))
|
719 |
-
|
720 |
-
if hasattr(model, "use_bettertransformer") and model.use_bettertransformer is True:
|
721 |
-
callbacks.append(SaveBetterTransformerModelCallback)
|
722 |
-
|
723 |
-
data_collator_kwargs = {
|
724 |
-
"padding": True, # True/"longest" is the default
|
725 |
-
}
|
726 |
-
if cfg.pad_to_sequence_len:
|
727 |
-
data_collator_kwargs["pad_to_multiple_of"] = 64 * math.ceil(
|
728 |
-
cfg.sequence_len / 64
|
729 |
-
)
|
730 |
-
else:
|
731 |
-
# A100 is best at 64, while others at 8. Let's use the larger so we don't have to check
|
732 |
-
# https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
|
733 |
-
data_collator_kwargs["pad_to_multiple_of"] = 64
|
734 |
-
|
735 |
-
if cfg.is_llama_derived_model and cfg.landmark_attention:
|
736 |
-
from axolotl.monkeypatch.llama_landmark_attn import (
|
737 |
-
add_mem_tokens,
|
738 |
-
get_mem_id,
|
739 |
-
set_model_mem_id,
|
740 |
-
)
|
741 |
-
|
742 |
-
set_model_mem_id(model, tokenizer)
|
743 |
-
|
744 |
-
LOG.info("Adding landmark attention tokens to dataset")
|
745 |
-
|
746 |
-
for dataset in [train_dataset, eval_dataset]:
|
747 |
-
dataset = dataset.map(
|
748 |
-
partial(add_mem_tokens, mem_freq=50, mem_id=get_mem_id(tokenizer)),
|
749 |
-
batched=False,
|
750 |
-
num_proc=32,
|
751 |
-
)
|
752 |
-
|
753 |
-
trainer_cls = AxolotlTrainer
|
754 |
-
if cfg.lr_scheduler == "one_cycle" and (cfg.fsdp or cfg.adapter == "qlora"):
|
755 |
-
trainer_cls = OneCycleLRSchedulerTrainer
|
756 |
-
elif cfg.relora_steps:
|
757 |
-
trainer_cls = ReLoRATrainer
|
758 |
-
trainer = trainer_cls(
|
759 |
-
model=model,
|
760 |
-
train_dataset=train_dataset,
|
761 |
-
eval_dataset=eval_dataset,
|
762 |
-
args=training_args,
|
763 |
-
data_collator=DataCollatorForSeq2Seq(
|
764 |
-
tokenizer,
|
765 |
-
return_tensors="pt",
|
766 |
-
**data_collator_kwargs,
|
767 |
-
),
|
768 |
-
bench_data_collator=transformers.DataCollatorForSeq2Seq(
|
769 |
-
tokenizer,
|
770 |
-
return_tensors="pt",
|
771 |
-
**data_collator_kwargs,
|
772 |
-
),
|
773 |
-
callbacks=callbacks,
|
774 |
-
**trainer_kwargs,
|
775 |
-
)
|
776 |
-
|
777 |
-
if cfg.use_wandb and cfg.eval_table_size > 0:
|
778 |
-
LogPredictionCallback = log_prediction_callback_factory(trainer, tokenizer)
|
779 |
-
trainer.add_callback(LogPredictionCallback(cfg))
|
780 |
-
|
781 |
-
if cfg.use_wandb:
|
782 |
-
trainer.add_callback(SaveAxolotlConfigtoWandBCallback(cfg.axolotl_config_path))
|
783 |
-
|
784 |
-
if cfg.do_bench_eval:
|
785 |
-
trainer.add_callback(bench_eval_callback_factory(trainer, tokenizer))
|
786 |
-
|
787 |
-
# TODO on_save callback to sync checkpoints to GCP/AWS in background
|
788 |
-
if cfg.early_stopping_patience:
|
789 |
-
early_stop_cb = EarlyStoppingCallback(
|
790 |
-
cfg.early_stopping_patience,
|
791 |
-
)
|
792 |
-
trainer.add_callback(early_stop_cb)
|
793 |
|
794 |
-
return
|
|
|
1 |
"""Module containing the Trainer class and related functions"""
|
|
|
2 |
import logging
|
3 |
import math
|
4 |
import os
|
|
|
5 |
from contextlib import contextmanager
|
|
|
6 |
from functools import partial
|
7 |
+
from typing import List
|
|
|
8 |
|
9 |
import numpy as np
|
10 |
import torch
|
11 |
import torch.cuda
|
12 |
import torch.distributed as dist
|
13 |
+
from datasets import set_caching_enabled
|
14 |
+
from torch.utils.data import DistributedSampler, RandomSampler
|
15 |
+
|
16 |
+
from axolotl.core.trainer_builder import HFCausalTrainerBuilder
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
from axolotl.utils.collators import DataCollatorForSeq2Seq
|
18 |
from axolotl.utils.dataloader import MultipackDistributedDataloader
|
19 |
from axolotl.utils.distributed import (
|
|
|
22 |
reduce_and_broadcast,
|
23 |
zero_first,
|
24 |
)
|
|
|
25 |
|
26 |
LOG = logging.getLogger("axolotl")
|
27 |
|
|
|
88 |
return weighted_cross_entropy(logits, labels, weights)
|
89 |
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
def add_position_ids(sample):
|
92 |
sample_len = len(sample["input_ids"])
|
93 |
sample["position_ids"] = torch.arange(len(sample["input_ids"]))
|
|
|
265 |
elif cfg.deepspeed:
|
266 |
os.environ["ACCELERATE_USE_DEEPSPEED"] = "true"
|
267 |
|
268 |
+
trainer_builder = HFCausalTrainerBuilder(cfg, model, tokenizer)
|
269 |
+
trainer_builder.train_dataset = train_dataset
|
270 |
+
trainer_builder.eval_dataset = eval_dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
+
return trainer_builder.build(total_num_steps)
|