copy xformers attn from ooba since we removed dep on alpaca_lora_4bit
Browse files
src/axolotl/monkeypatch/llama_attn_hijack_xformers.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
Directly copied the code from https://raw.githubusercontent.com/oobabooga/text-generation-webui/main/modules/llama_attn_hijack.py and made some adjustments
|
3 |
+
'''
|
4 |
+
|
5 |
+
import logging
|
6 |
+
import math
|
7 |
+
from typing import Optional, Tuple
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import transformers.models.llama.modeling_llama
|
12 |
+
|
13 |
+
try:
|
14 |
+
import xformers.ops
|
15 |
+
except Exception:
|
16 |
+
logging.error("xformers not found! Please install it before trying to use it.")
|
17 |
+
|
18 |
+
|
19 |
+
def hijack_llama_attention():
|
20 |
+
transformers.models.llama.modeling_llama.LlamaAttention.forward = xformers_forward
|
21 |
+
logging.info("Replaced attention with xformers_attention")
|
22 |
+
|
23 |
+
|
24 |
+
def hijack_llama_sdp_attention():
|
25 |
+
transformers.models.llama.modeling_llama.LlamaAttention.forward = sdp_attention_forward
|
26 |
+
logging.info("Replaced attention with sdp_attention")
|
27 |
+
|
28 |
+
|
29 |
+
def xformers_forward(
|
30 |
+
self,
|
31 |
+
hidden_states: torch.Tensor,
|
32 |
+
attention_mask: Optional[torch.Tensor] = None,
|
33 |
+
position_ids: Optional[torch.LongTensor] = None,
|
34 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
35 |
+
output_attentions: bool = False,
|
36 |
+
use_cache: bool = False,
|
37 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
38 |
+
bsz, q_len, _ = hidden_states.size()
|
39 |
+
|
40 |
+
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
41 |
+
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
42 |
+
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
43 |
+
|
44 |
+
kv_seq_len = key_states.shape[-2]
|
45 |
+
if past_key_value is not None:
|
46 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
47 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
48 |
+
query_states, key_states = transformers.models.llama.modeling_llama.apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
49 |
+
# [bsz, nh, t, hd]
|
50 |
+
|
51 |
+
if past_key_value is not None:
|
52 |
+
# reuse k, v, self_attention
|
53 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
54 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
55 |
+
|
56 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
57 |
+
|
58 |
+
# We only apply xformers optimizations if we don't need to output the whole attention matrix
|
59 |
+
if not output_attentions:
|
60 |
+
query_states = query_states.transpose(1, 2)
|
61 |
+
key_states = key_states.transpose(1, 2)
|
62 |
+
value_states = value_states.transpose(1, 2)
|
63 |
+
|
64 |
+
# This is a nasty hack. We know attention_mask in transformers is either LowerTriangular or all Zeros.
|
65 |
+
# We therefore check if one element in the upper triangular portion is zero. If it is, then the mask is all zeros.
|
66 |
+
if attention_mask is None or attention_mask[0, 0, 0, 1] == 0:
|
67 |
+
# input and output should be of form (bsz, q_len, num_heads, head_dim)
|
68 |
+
attn_output = xformers.ops.memory_efficient_attention(query_states, key_states, value_states, attn_bias=None)
|
69 |
+
else:
|
70 |
+
# input and output should be of form (bsz, q_len, num_heads, head_dim)
|
71 |
+
attn_output = xformers.ops.memory_efficient_attention(query_states, key_states, value_states, attn_bias=xformers.ops.LowerTriangularMask())
|
72 |
+
attn_weights = None
|
73 |
+
else:
|
74 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
75 |
+
|
76 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
77 |
+
raise ValueError(
|
78 |
+
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
|
79 |
+
f" {attn_weights.size()}"
|
80 |
+
)
|
81 |
+
|
82 |
+
if attention_mask is not None:
|
83 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
84 |
+
raise ValueError(
|
85 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
86 |
+
)
|
87 |
+
attn_weights = attn_weights + attention_mask
|
88 |
+
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
|
89 |
+
|
90 |
+
# upcast attention to fp32
|
91 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
92 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
93 |
+
|
94 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
95 |
+
raise ValueError(
|
96 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
97 |
+
f" {attn_output.size()}"
|
98 |
+
)
|
99 |
+
|
100 |
+
attn_output = attn_output.transpose(1, 2)
|
101 |
+
|
102 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
103 |
+
attn_output = self.o_proj(attn_output)
|
104 |
+
return attn_output, attn_weights, past_key_value
|
105 |
+
|
106 |
+
|
107 |
+
def sdp_attention_forward(
|
108 |
+
self,
|
109 |
+
hidden_states: torch.Tensor,
|
110 |
+
attention_mask: Optional[torch.Tensor] = None,
|
111 |
+
position_ids: Optional[torch.LongTensor] = None,
|
112 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
113 |
+
output_attentions: bool = False,
|
114 |
+
use_cache: bool = False,
|
115 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
116 |
+
bsz, q_len, _ = hidden_states.size()
|
117 |
+
|
118 |
+
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
119 |
+
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
120 |
+
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
121 |
+
|
122 |
+
kv_seq_len = key_states.shape[-2]
|
123 |
+
if past_key_value is not None:
|
124 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
125 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
126 |
+
query_states, key_states = transformers.models.llama.modeling_llama.apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
127 |
+
# [bsz, nh, t, hd]
|
128 |
+
|
129 |
+
if past_key_value is not None:
|
130 |
+
# reuse k, v, self_attention
|
131 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
132 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
133 |
+
|
134 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
135 |
+
|
136 |
+
# We only apply sdp attention if we don't need to output the whole attention matrix
|
137 |
+
if not output_attentions:
|
138 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask=attention_mask, is_causal=False)
|
139 |
+
attn_weights = None
|
140 |
+
else:
|
141 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
142 |
+
|
143 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
144 |
+
raise ValueError(
|
145 |
+
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
|
146 |
+
f" {attn_weights.size()}"
|
147 |
+
)
|
148 |
+
|
149 |
+
if attention_mask is not None:
|
150 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
151 |
+
raise ValueError(
|
152 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
153 |
+
)
|
154 |
+
attn_weights = attn_weights + attention_mask
|
155 |
+
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
|
156 |
+
|
157 |
+
# upcast attention to fp32
|
158 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
159 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
160 |
+
|
161 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
162 |
+
raise ValueError(
|
163 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
164 |
+
f" {attn_output.size()}"
|
165 |
+
)
|
166 |
+
|
167 |
+
attn_output = attn_output.transpose(1, 2)
|
168 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
169 |
+
|
170 |
+
attn_output = self.o_proj(attn_output)
|
171 |
+
|
172 |
+
return attn_output, attn_weights, past_key_value
|
src/axolotl/utils/models.py
CHANGED
@@ -97,12 +97,19 @@ def load_model(
|
|
97 |
logging.info("patching with flash attention")
|
98 |
replace_llama_attn_with_flash_attn()
|
99 |
elif is_llama_derived_model and cfg.xformers_attention:
|
100 |
-
from
|
101 |
hijack_llama_attention,
|
102 |
)
|
103 |
|
104 |
logging.info("patching with xformers attention")
|
105 |
hijack_llama_attention()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
if cfg.bf16:
|
108 |
torch_dtype = torch.bfloat16
|
|
|
97 |
logging.info("patching with flash attention")
|
98 |
replace_llama_attn_with_flash_attn()
|
99 |
elif is_llama_derived_model and cfg.xformers_attention:
|
100 |
+
from axolotl.monkeypatch.llama_attn_hijack_xformers import (
|
101 |
hijack_llama_attention,
|
102 |
)
|
103 |
|
104 |
logging.info("patching with xformers attention")
|
105 |
hijack_llama_attention()
|
106 |
+
elif is_llama_derived_model and cfg.sdp_attention:
|
107 |
+
from axolotl.monkeypatch.llama_attn_hijack_xformers import (
|
108 |
+
hijack_llama_sdp_attention,
|
109 |
+
)
|
110 |
+
|
111 |
+
logging.info("patching with sdp attention")
|
112 |
+
hijack_llama_sdp_attention()
|
113 |
|
114 |
if cfg.bf16:
|
115 |
torch_dtype = torch.bfloat16
|