Phi2 multipack (#1173)
Browse files* phi2 multipack
* update validation and examples for phi
* more updates to phi examples
* make sure to use the correct collator for phi multipack
* phi needs attention mask now for multipack
* if the special token already exists in the tokenizer, don't require in lora modules to save
* fix qlora yml for phi, fix phi test validation
* test qlora too
* make sure flash attention is enabled for the test
* don't use remote code for phi anymore
* reduce sequence len for sample packing phi
- examples/phi/phi-ft.yml +8 -11
- examples/phi/phi-qlora.yml +9 -12
- examples/phi/phi2-ft.yml +11 -14
- src/axolotl/core/trainer_builder.py +1 -1
- src/axolotl/models/phi/__init__.py +0 -8
- src/axolotl/models/phi/configuration_mixformer_sequential.py +0 -63
- src/axolotl/models/phi/configuration_phi.py +0 -65
- src/axolotl/models/phi/modeling_mixformer_sequential.py +0 -930
- src/axolotl/models/phi/modeling_phi.py +0 -1092
- src/axolotl/monkeypatch/phi/__init__.py +12 -0
- src/axolotl/utils/config.py +0 -14
- src/axolotl/utils/data.py +1 -1
- src/axolotl/utils/lora_embeddings.py +0 -2
- src/axolotl/utils/models.py +8 -15
- src/axolotl/utils/trainer.py +3 -6
- tests/e2e/patched/test_phi_multipack.py +123 -0
- tests/e2e/test_phi.py +21 -31
- tests/test_validation.py +4 -4
examples/phi/phi-ft.yml
CHANGED
@@ -1,8 +1,6 @@
|
|
1 |
base_model: microsoft/phi-1_5
|
2 |
-
model_type:
|
3 |
tokenizer_type: AutoTokenizer
|
4 |
-
is_llama_derived_model: false
|
5 |
-
trust_remote_code: true
|
6 |
|
7 |
load_in_8bit: false
|
8 |
load_in_4bit: false
|
@@ -18,7 +16,7 @@ output_dir: ./phi-sft-out
|
|
18 |
|
19 |
sequence_len: 2048
|
20 |
sample_packing: true
|
21 |
-
pad_to_sequence_len:
|
22 |
|
23 |
adapter:
|
24 |
lora_model_dir:
|
@@ -35,7 +33,7 @@ wandb_name:
|
|
35 |
wandb_log_model:
|
36 |
|
37 |
gradient_accumulation_steps: 1
|
38 |
-
micro_batch_size:
|
39 |
num_epochs: 4
|
40 |
optimizer: adamw_torch
|
41 |
adam_beta2: 0.95
|
@@ -45,18 +43,20 @@ lr_scheduler: cosine
|
|
45 |
learning_rate: 0.000003
|
46 |
|
47 |
train_on_inputs: false
|
48 |
-
group_by_length:
|
49 |
bf16: auto
|
50 |
fp16:
|
51 |
tf32: true
|
52 |
|
53 |
-
gradient_checkpointing:
|
|
|
|
|
54 |
early_stopping_patience:
|
55 |
resume_from_checkpoint:
|
56 |
local_rank:
|
57 |
logging_steps: 1
|
58 |
xformers_attention:
|
59 |
-
flash_attention:
|
60 |
|
61 |
warmup_steps: 100
|
62 |
evals_per_epoch: 4
|
@@ -68,7 +68,4 @@ fsdp:
|
|
68 |
fsdp_config:
|
69 |
resize_token_embeddings_to_32x: true
|
70 |
special_tokens:
|
71 |
-
bos_token: "<|endoftext|>"
|
72 |
-
eos_token: "<|endoftext|>"
|
73 |
-
unk_token: "<|endoftext|>"
|
74 |
pad_token: "<|endoftext|>"
|
|
|
1 |
base_model: microsoft/phi-1_5
|
2 |
+
model_type: AutoModelForCausalLM
|
3 |
tokenizer_type: AutoTokenizer
|
|
|
|
|
4 |
|
5 |
load_in_8bit: false
|
6 |
load_in_4bit: false
|
|
|
16 |
|
17 |
sequence_len: 2048
|
18 |
sample_packing: true
|
19 |
+
pad_to_sequence_len: true
|
20 |
|
21 |
adapter:
|
22 |
lora_model_dir:
|
|
|
33 |
wandb_log_model:
|
34 |
|
35 |
gradient_accumulation_steps: 1
|
36 |
+
micro_batch_size: 2
|
37 |
num_epochs: 4
|
38 |
optimizer: adamw_torch
|
39 |
adam_beta2: 0.95
|
|
|
43 |
learning_rate: 0.000003
|
44 |
|
45 |
train_on_inputs: false
|
46 |
+
group_by_length: false
|
47 |
bf16: auto
|
48 |
fp16:
|
49 |
tf32: true
|
50 |
|
51 |
+
gradient_checkpointing: true
|
52 |
+
gradient_checkpointing_kwargs:
|
53 |
+
use_reentrant: True
|
54 |
early_stopping_patience:
|
55 |
resume_from_checkpoint:
|
56 |
local_rank:
|
57 |
logging_steps: 1
|
58 |
xformers_attention:
|
59 |
+
flash_attention: true
|
60 |
|
61 |
warmup_steps: 100
|
62 |
evals_per_epoch: 4
|
|
|
68 |
fsdp_config:
|
69 |
resize_token_embeddings_to_32x: true
|
70 |
special_tokens:
|
|
|
|
|
|
|
71 |
pad_token: "<|endoftext|>"
|
examples/phi/phi-qlora.yml
CHANGED
@@ -1,8 +1,6 @@
|
|
1 |
base_model: microsoft/phi-1_5
|
2 |
model_type: AutoModelForCausalLM
|
3 |
tokenizer_type: AutoTokenizer
|
4 |
-
is_llama_derived_model: false
|
5 |
-
trust_remote_code: true
|
6 |
|
7 |
load_in_8bit: false
|
8 |
load_in_4bit: true
|
@@ -16,9 +14,9 @@ dataset_prepared_path:
|
|
16 |
val_set_size: 0.05
|
17 |
output_dir: ./phi-sft-out
|
18 |
|
19 |
-
sequence_len:
|
20 |
-
sample_packing:
|
21 |
-
pad_to_sequence_len:
|
22 |
|
23 |
adapter: qlora
|
24 |
lora_model_dir:
|
@@ -35,7 +33,7 @@ wandb_name:
|
|
35 |
wandb_log_model:
|
36 |
|
37 |
gradient_accumulation_steps: 1
|
38 |
-
micro_batch_size:
|
39 |
num_epochs: 4
|
40 |
optimizer: adamw_torch
|
41 |
adam_beta2: 0.95
|
@@ -45,18 +43,20 @@ lr_scheduler: cosine
|
|
45 |
learning_rate: 0.000003
|
46 |
|
47 |
train_on_inputs: false
|
48 |
-
group_by_length:
|
49 |
bf16: auto
|
50 |
fp16:
|
51 |
tf32: true
|
52 |
|
53 |
-
gradient_checkpointing:
|
|
|
|
|
54 |
early_stopping_patience:
|
55 |
resume_from_checkpoint:
|
56 |
local_rank:
|
57 |
logging_steps: 1
|
58 |
xformers_attention:
|
59 |
-
flash_attention:
|
60 |
|
61 |
warmup_steps: 100
|
62 |
evals_per_epoch: 4
|
@@ -68,7 +68,4 @@ fsdp:
|
|
68 |
fsdp_config:
|
69 |
resize_token_embeddings_to_32x: true
|
70 |
special_tokens:
|
71 |
-
bos_token: "<|endoftext|>"
|
72 |
-
eos_token: "<|endoftext|>"
|
73 |
-
unk_token: "<|endoftext|>"
|
74 |
pad_token: "<|endoftext|>"
|
|
|
1 |
base_model: microsoft/phi-1_5
|
2 |
model_type: AutoModelForCausalLM
|
3 |
tokenizer_type: AutoTokenizer
|
|
|
|
|
4 |
|
5 |
load_in_8bit: false
|
6 |
load_in_4bit: true
|
|
|
14 |
val_set_size: 0.05
|
15 |
output_dir: ./phi-sft-out
|
16 |
|
17 |
+
sequence_len: 2048
|
18 |
+
sample_packing: true
|
19 |
+
pad_to_sequence_len: true
|
20 |
|
21 |
adapter: qlora
|
22 |
lora_model_dir:
|
|
|
33 |
wandb_log_model:
|
34 |
|
35 |
gradient_accumulation_steps: 1
|
36 |
+
micro_batch_size: 2
|
37 |
num_epochs: 4
|
38 |
optimizer: adamw_torch
|
39 |
adam_beta2: 0.95
|
|
|
43 |
learning_rate: 0.000003
|
44 |
|
45 |
train_on_inputs: false
|
46 |
+
group_by_length: false
|
47 |
bf16: auto
|
48 |
fp16:
|
49 |
tf32: true
|
50 |
|
51 |
+
gradient_checkpointing: true
|
52 |
+
gradient_checkpointing_kwargs:
|
53 |
+
use_reentrant: True
|
54 |
early_stopping_patience:
|
55 |
resume_from_checkpoint:
|
56 |
local_rank:
|
57 |
logging_steps: 1
|
58 |
xformers_attention:
|
59 |
+
flash_attention: true
|
60 |
|
61 |
warmup_steps: 100
|
62 |
evals_per_epoch: 4
|
|
|
68 |
fsdp_config:
|
69 |
resize_token_embeddings_to_32x: true
|
70 |
special_tokens:
|
|
|
|
|
|
|
71 |
pad_token: "<|endoftext|>"
|
examples/phi/phi2-ft.yml
CHANGED
@@ -1,8 +1,6 @@
|
|
1 |
base_model: microsoft/phi-2
|
2 |
-
model_revision: 834565c # pin model repo to the previous architecture
|
3 |
model_type: AutoModelForCausalLM
|
4 |
tokenizer_type: AutoTokenizer
|
5 |
-
trust_remote_code: true
|
6 |
|
7 |
load_in_8bit: false
|
8 |
load_in_4bit: false
|
@@ -17,19 +15,16 @@ val_set_size: 0.05
|
|
17 |
output_dir: ./phi-sft-out
|
18 |
|
19 |
sequence_len: 2048
|
20 |
-
sample_packing:
|
21 |
-
pad_to_sequence_len:
|
22 |
|
23 |
adapter:
|
24 |
lora_model_dir:
|
25 |
-
lora_r:
|
26 |
-
lora_alpha:
|
27 |
-
lora_dropout:
|
28 |
-
lora_target_linear:
|
29 |
lora_fan_in_fan_out:
|
30 |
-
lora_modules_to_save:
|
31 |
-
- embd
|
32 |
-
- lm_head
|
33 |
|
34 |
wandb_project:
|
35 |
wandb_entity:
|
@@ -38,14 +33,14 @@ wandb_name:
|
|
38 |
wandb_log_model:
|
39 |
|
40 |
gradient_accumulation_steps: 1
|
41 |
-
micro_batch_size:
|
42 |
num_epochs: 4
|
43 |
-
optimizer:
|
44 |
adam_beta2: 0.95
|
45 |
adam_epsilon: 0.00001
|
46 |
max_grad_norm: 1.0
|
47 |
lr_scheduler: cosine
|
48 |
-
learning_rate:
|
49 |
|
50 |
train_on_inputs: false
|
51 |
group_by_length: false
|
@@ -54,6 +49,8 @@ fp16:
|
|
54 |
tf32: true
|
55 |
|
56 |
gradient_checkpointing: true
|
|
|
|
|
57 |
early_stopping_patience:
|
58 |
resume_from_checkpoint:
|
59 |
local_rank:
|
|
|
1 |
base_model: microsoft/phi-2
|
|
|
2 |
model_type: AutoModelForCausalLM
|
3 |
tokenizer_type: AutoTokenizer
|
|
|
4 |
|
5 |
load_in_8bit: false
|
6 |
load_in_4bit: false
|
|
|
15 |
output_dir: ./phi-sft-out
|
16 |
|
17 |
sequence_len: 2048
|
18 |
+
sample_packing: true
|
19 |
+
pad_to_sequence_len: true
|
20 |
|
21 |
adapter:
|
22 |
lora_model_dir:
|
23 |
+
lora_r:
|
24 |
+
lora_alpha:
|
25 |
+
lora_dropout:
|
26 |
+
lora_target_linear:
|
27 |
lora_fan_in_fan_out:
|
|
|
|
|
|
|
28 |
|
29 |
wandb_project:
|
30 |
wandb_entity:
|
|
|
33 |
wandb_log_model:
|
34 |
|
35 |
gradient_accumulation_steps: 1
|
36 |
+
micro_batch_size: 2
|
37 |
num_epochs: 4
|
38 |
+
optimizer: adamw_torch
|
39 |
adam_beta2: 0.95
|
40 |
adam_epsilon: 0.00001
|
41 |
max_grad_norm: 1.0
|
42 |
lr_scheduler: cosine
|
43 |
+
learning_rate: 0.000003
|
44 |
|
45 |
train_on_inputs: false
|
46 |
group_by_length: false
|
|
|
49 |
tf32: true
|
50 |
|
51 |
gradient_checkpointing: true
|
52 |
+
gradient_checkpointing_kwargs:
|
53 |
+
use_reentrant: True
|
54 |
early_stopping_patience:
|
55 |
resume_from_checkpoint:
|
56 |
local_rank:
|
src/axolotl/core/trainer_builder.py
CHANGED
@@ -930,7 +930,7 @@ class HFCausalTrainerBuilder(TrainerBuilderBase):
|
|
930 |
]
|
931 |
]
|
932 |
if use_batch_sampler_collator:
|
933 |
-
if self.cfg.model_config_type in ["mixtral", "qwen2"]:
|
934 |
collator = V2BatchSamplerDataCollatorForSeq2Seq
|
935 |
else:
|
936 |
collator = BatchSamplerDataCollatorForSeq2Seq
|
|
|
930 |
]
|
931 |
]
|
932 |
if use_batch_sampler_collator:
|
933 |
+
if self.cfg.model_config_type in ["mixtral", "qwen2", "falcon", "phi"]:
|
934 |
collator = V2BatchSamplerDataCollatorForSeq2Seq
|
935 |
else:
|
936 |
collator = BatchSamplerDataCollatorForSeq2Seq
|
src/axolotl/models/phi/__init__.py
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
MixFormers model architecture used for phi models
|
3 |
-
"""
|
4 |
-
|
5 |
-
from .configuration_mixformer_sequential import MixFormerSequentialConfig # noqa
|
6 |
-
from .configuration_phi import PhiConfig # noqa
|
7 |
-
from .modeling_mixformer_sequential import MixFormerSequentialForCausalLM # noqa
|
8 |
-
from .modeling_phi import PhiForCausalLM # noqa
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/axolotl/models/phi/configuration_mixformer_sequential.py
DELETED
@@ -1,63 +0,0 @@
|
|
1 |
-
# pylint: skip-file
|
2 |
-
|
3 |
-
# Copyright (c) Microsoft Corporation.
|
4 |
-
# Licensed under the MIT license.
|
5 |
-
|
6 |
-
import math
|
7 |
-
from typing import Any, Dict, List, Optional, Union
|
8 |
-
|
9 |
-
from transformers import PretrainedConfig
|
10 |
-
|
11 |
-
|
12 |
-
class MixFormerSequentialConfig(PretrainedConfig):
|
13 |
-
"""MixFormer (sequential for DeepSpeed) configuration."""
|
14 |
-
|
15 |
-
model_type = "mixformer-sequential"
|
16 |
-
|
17 |
-
attribute_map = {
|
18 |
-
"max_position_embeddings": "n_positions",
|
19 |
-
"hidden_size": "n_embd",
|
20 |
-
"num_attention_heads": "n_head",
|
21 |
-
"num_hidden_layers": "n_layer",
|
22 |
-
"input_emb_layer": "embd_layer", # `input_emb_layer` key is for backward compatibility
|
23 |
-
"blocks": "architecture", # `blocks` key is for backward compatibility
|
24 |
-
}
|
25 |
-
|
26 |
-
def __init__(
|
27 |
-
self,
|
28 |
-
vocab_size: Optional[int] = 50304,
|
29 |
-
n_positions: Optional[int] = 2048,
|
30 |
-
n_embd: Optional[int] = 1024,
|
31 |
-
n_layer: Optional[int] = 20,
|
32 |
-
n_inner: Optional[int] = None,
|
33 |
-
n_head: Optional[int] = 16,
|
34 |
-
rotary_dim: Optional[int] = 32,
|
35 |
-
activation_function: Optional[str] = "gelu_new",
|
36 |
-
embd_layer: Optional[str] = "default",
|
37 |
-
architecture: Union[Dict[str, Any], List[Dict[str, Any]]] = None,
|
38 |
-
embd_pdrop: Optional[float] = 0.0,
|
39 |
-
resid_pdrop: Optional[float] = 0.0,
|
40 |
-
layer_norm_epsilon: Optional[float] = 1e-5,
|
41 |
-
initializer_range: Optional[float] = 0.02,
|
42 |
-
tie_word_embeddings: Optional[bool] = False,
|
43 |
-
pad_vocab_size_multiple: Optional[int] = 64,
|
44 |
-
**kwargs
|
45 |
-
) -> None:
|
46 |
-
self.vocab_size = int(
|
47 |
-
math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
|
48 |
-
)
|
49 |
-
self.n_positions = n_positions
|
50 |
-
self.n_embd = n_embd
|
51 |
-
self.n_layer = n_layer
|
52 |
-
self.n_inner = n_inner
|
53 |
-
self.n_head = n_head
|
54 |
-
self.rotary_dim = min(rotary_dim, n_embd // n_head)
|
55 |
-
self.activation_function = activation_function
|
56 |
-
self.embd_layer = embd_layer
|
57 |
-
self.architecture = architecture
|
58 |
-
self.embd_pdrop = embd_pdrop
|
59 |
-
self.resid_pdrop = resid_pdrop
|
60 |
-
self.layer_norm_epsilon = layer_norm_epsilon
|
61 |
-
self.initializer_range = initializer_range
|
62 |
-
|
63 |
-
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/axolotl/models/phi/configuration_phi.py
DELETED
@@ -1,65 +0,0 @@
|
|
1 |
-
# pylint: skip-file
|
2 |
-
# Copyright (c) Microsoft Corporation.
|
3 |
-
# Licensed under the MIT license.
|
4 |
-
|
5 |
-
import math
|
6 |
-
from typing import Optional
|
7 |
-
|
8 |
-
from transformers import PretrainedConfig
|
9 |
-
|
10 |
-
|
11 |
-
class PhiConfig(PretrainedConfig):
|
12 |
-
"""Phi configuration."""
|
13 |
-
|
14 |
-
model_type = "phi"
|
15 |
-
attribute_map = {
|
16 |
-
"max_position_embeddings": "n_positions",
|
17 |
-
"hidden_size": "n_embd",
|
18 |
-
"num_attention_heads": "n_head",
|
19 |
-
"num_hidden_layers": "n_layer",
|
20 |
-
}
|
21 |
-
|
22 |
-
def __init__(
|
23 |
-
self,
|
24 |
-
vocab_size: int = 50304,
|
25 |
-
n_positions: int = 2048,
|
26 |
-
n_embd: int = 1024,
|
27 |
-
n_layer: int = 20,
|
28 |
-
n_inner: Optional[int] = None,
|
29 |
-
n_head: int = 16,
|
30 |
-
n_head_kv: Optional[int] = None,
|
31 |
-
rotary_dim: Optional[int] = 32,
|
32 |
-
activation_function: Optional[str] = "gelu_new",
|
33 |
-
flash_attn: bool = False,
|
34 |
-
flash_rotary: bool = False,
|
35 |
-
fused_dense: bool = False,
|
36 |
-
attn_pdrop: float = 0.0,
|
37 |
-
embd_pdrop: float = 0.0,
|
38 |
-
resid_pdrop: float = 0.0,
|
39 |
-
layer_norm_epsilon: float = 1e-5,
|
40 |
-
initializer_range: float = 0.02,
|
41 |
-
tie_word_embeddings: bool = False,
|
42 |
-
pad_vocab_size_multiple: int = 64,
|
43 |
-
**kwargs
|
44 |
-
) -> None:
|
45 |
-
self.vocab_size = int(
|
46 |
-
math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
|
47 |
-
)
|
48 |
-
self.n_positions = n_positions
|
49 |
-
self.n_embd = n_embd
|
50 |
-
self.n_layer = n_layer
|
51 |
-
self.n_inner = n_inner
|
52 |
-
self.n_head = n_head
|
53 |
-
self.n_head_kv = n_head_kv
|
54 |
-
self.rotary_dim = min(rotary_dim, n_embd // n_head)
|
55 |
-
self.activation_function = activation_function
|
56 |
-
self.flash_attn = flash_attn
|
57 |
-
self.flash_rotary = flash_rotary
|
58 |
-
self.fused_dense = fused_dense
|
59 |
-
self.attn_pdrop = attn_pdrop
|
60 |
-
self.embd_pdrop = embd_pdrop
|
61 |
-
self.resid_pdrop = resid_pdrop
|
62 |
-
self.layer_norm_epsilon = layer_norm_epsilon
|
63 |
-
self.initializer_range = initializer_range
|
64 |
-
|
65 |
-
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/axolotl/models/phi/modeling_mixformer_sequential.py
DELETED
@@ -1,930 +0,0 @@
|
|
1 |
-
# pylint: skip-file
|
2 |
-
|
3 |
-
# Copyright (c) Microsoft Corporation.
|
4 |
-
# Licensed under the MIT license.
|
5 |
-
|
6 |
-
# BSD 3-Clause License
|
7 |
-
#
|
8 |
-
# Copyright (c) 2022, Tri Dao, trid@cs.stanford.edu.
|
9 |
-
# All rights reserved.
|
10 |
-
#
|
11 |
-
# Redistribution and use in source and binary forms, with or without
|
12 |
-
# modification, are permitted provided that the following conditions are met:
|
13 |
-
#
|
14 |
-
# * Redistributions of source code must retain the above copyright notice, this
|
15 |
-
# list of conditions and the following disclaimer.
|
16 |
-
#
|
17 |
-
# * Redistributions in binary form must reproduce the above copyright notice,
|
18 |
-
# this list of conditions and the following disclaimer in the documentation
|
19 |
-
# and/or other materials provided with the distribution.
|
20 |
-
#
|
21 |
-
# * Neither the name of the copyright holder nor the names of its
|
22 |
-
# contributors may be used to endorse or promote products derived from
|
23 |
-
# this software without specific prior written permission.
|
24 |
-
#
|
25 |
-
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
26 |
-
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
27 |
-
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
28 |
-
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
29 |
-
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
30 |
-
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
31 |
-
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
32 |
-
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
33 |
-
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
34 |
-
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
35 |
-
|
36 |
-
from __future__ import annotations
|
37 |
-
|
38 |
-
import copy
|
39 |
-
import inspect
|
40 |
-
from dataclasses import dataclass, field
|
41 |
-
from typing import Any, Dict, Optional, Tuple
|
42 |
-
|
43 |
-
import torch
|
44 |
-
import torch.nn as nn
|
45 |
-
from einops import rearrange
|
46 |
-
from flash_attn.flash_attn_interface import (
|
47 |
-
flash_attn_kvpacked_func,
|
48 |
-
flash_attn_qkvpacked_func,
|
49 |
-
flash_attn_varlen_qkvpacked_func,
|
50 |
-
)
|
51 |
-
from transformers import PretrainedConfig, PreTrainedModel
|
52 |
-
from transformers.activations import ACT2FN
|
53 |
-
from transformers.modeling_outputs import CausalLMOutputWithPast
|
54 |
-
|
55 |
-
from ...monkeypatch.utils import get_cu_seqlens_from_pos_ids
|
56 |
-
from .configuration_mixformer_sequential import MixFormerSequentialConfig
|
57 |
-
|
58 |
-
|
59 |
-
@dataclass
|
60 |
-
class InferenceParams:
|
61 |
-
"""Inference parameters that are passed to the main model in order
|
62 |
-
to efficienly calculate and store the context during inference.
|
63 |
-
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
64 |
-
|
65 |
-
max_sequence_len: int
|
66 |
-
max_batch_size: int
|
67 |
-
sequence_len_offset: int = 0
|
68 |
-
batch_size_offset: int = 0
|
69 |
-
key_value_memory_dict: dict = field(default_factory=dict)
|
70 |
-
fused_ft_kernel: bool = False
|
71 |
-
lengths_per_sample: Optional[torch.Tensor] = None
|
72 |
-
|
73 |
-
|
74 |
-
class Embedding(nn.Module):
|
75 |
-
"""Token embedding with dropout."""
|
76 |
-
|
77 |
-
def __init__(self, config: PretrainedConfig) -> None:
|
78 |
-
super().__init__()
|
79 |
-
|
80 |
-
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
|
81 |
-
self.drop = nn.Dropout(config.embd_pdrop)
|
82 |
-
|
83 |
-
def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
|
84 |
-
input_shape = input_ids.size()
|
85 |
-
input_ids = input_ids.view(-1, input_shape[-1])
|
86 |
-
|
87 |
-
hidden_states = self.wte(input_ids)
|
88 |
-
hidden_states = self.drop(hidden_states)
|
89 |
-
|
90 |
-
return hidden_states
|
91 |
-
|
92 |
-
|
93 |
-
class RotaryEmbedding(nn.Module):
|
94 |
-
"""PyTorch implementation of `flash-attn` RotaryEmbedding layer.
|
95 |
-
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
96 |
-
|
97 |
-
def __init__(
|
98 |
-
self,
|
99 |
-
dim: int,
|
100 |
-
base: Optional[int] = 10000,
|
101 |
-
scale_base: Optional[float] = None,
|
102 |
-
device: Optional[str] = None,
|
103 |
-
**kwargs,
|
104 |
-
) -> None:
|
105 |
-
super().__init__()
|
106 |
-
|
107 |
-
if scale_base is not None:
|
108 |
-
raise NotImplementedError
|
109 |
-
|
110 |
-
# Generate and save the inverse frequency buffer (non-trainable)
|
111 |
-
self.dim = dim
|
112 |
-
self.base = base
|
113 |
-
self.scale_base = scale_base
|
114 |
-
self.device = device
|
115 |
-
|
116 |
-
inv_freq = 1.0 / (
|
117 |
-
base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim)
|
118 |
-
)
|
119 |
-
self.register_buffer("inv_freq", inv_freq)
|
120 |
-
|
121 |
-
scale = (
|
122 |
-
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim)
|
123 |
-
/ (1.4 * dim)
|
124 |
-
if scale_base is not None
|
125 |
-
else None
|
126 |
-
)
|
127 |
-
self.register_buffer("scale", scale)
|
128 |
-
|
129 |
-
self._seq_len_cached = 0
|
130 |
-
self._cos_cached = None
|
131 |
-
self._sin_cached = None
|
132 |
-
self._cos_k_cached = None
|
133 |
-
self._sin_k_cached = None
|
134 |
-
|
135 |
-
def _update_cos_sin_cache(
|
136 |
-
self, x: torch.FloatTensor, seqlen_offset: Optional[int] = 0
|
137 |
-
) -> None:
|
138 |
-
# Reset the tables if the sequence length has changed,
|
139 |
-
# or if we're on a new device (possibly due to tracing for instance)
|
140 |
-
seqlen = x.shape[1] + seqlen_offset
|
141 |
-
|
142 |
-
# Re-generate the inverse frequency buffer if it's not fp32
|
143 |
-
# (for instance if model.half() was called)
|
144 |
-
if self.inv_freq.dtype != "torch.float32":
|
145 |
-
self.inv_freq = 1.0 / (
|
146 |
-
self.base
|
147 |
-
** (
|
148 |
-
torch.arange(
|
149 |
-
0, self.dim, 2, device=self.device, dtype=torch.float32
|
150 |
-
)
|
151 |
-
/ self.dim
|
152 |
-
)
|
153 |
-
)
|
154 |
-
|
155 |
-
if (
|
156 |
-
seqlen > self._seq_len_cached
|
157 |
-
or self._cos_cached.device != x.device
|
158 |
-
or self._cos_cached.dtype != x.dtype
|
159 |
-
):
|
160 |
-
self._seq_len_cached = seqlen
|
161 |
-
t = torch.arange(seqlen, device=x.device, dtype=torch.float32)
|
162 |
-
|
163 |
-
# Don't do einsum, it converts fp32 to fp16
|
164 |
-
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
165 |
-
freqs = torch.outer(
|
166 |
-
t, self.inv_freq.to(device=t.device, dtype=torch.float32)
|
167 |
-
)
|
168 |
-
if self.scale is None:
|
169 |
-
self._cos_cached = torch.cos(freqs).to(x.dtype)
|
170 |
-
self._sin_cached = torch.sin(freqs).to(x.dtype)
|
171 |
-
else:
|
172 |
-
power = (
|
173 |
-
torch.arange(
|
174 |
-
seqlen, dtype=self.scale.dtype, device=self.scale.device
|
175 |
-
)
|
176 |
-
- seqlen // 2
|
177 |
-
) / self.scale_base
|
178 |
-
scale = self.scale.to(device=power.device) ** rearrange(
|
179 |
-
power, "s -> s 1"
|
180 |
-
)
|
181 |
-
|
182 |
-
# We want the multiplication by scale to happen in fp32
|
183 |
-
self._cos_cached = (torch.cos(freqs) * scale).to(x.dtype)
|
184 |
-
self._sin_cached = (torch.sin(freqs) * scale).to(x.dtype)
|
185 |
-
self._cos_k_cached = (torch.cos(freqs) / scale).to(x.dtype)
|
186 |
-
self._sin_k_cached = (torch.sin(freqs) / scale).to(x.dtype)
|
187 |
-
|
188 |
-
def apply_rotary_emb_qkv(
|
189 |
-
self,
|
190 |
-
qkv: torch.FloatTensor,
|
191 |
-
sin: torch.FloatTensor,
|
192 |
-
cos: torch.FloatTensor,
|
193 |
-
sin_k: Optional[torch.FloatTensor] = None,
|
194 |
-
cos_k: Optional[torch.FloatTensor] = None,
|
195 |
-
) -> torch.FloatTensor:
|
196 |
-
_, seqlen, three, _, headdim = qkv.shape
|
197 |
-
assert three == 3
|
198 |
-
|
199 |
-
rotary_seqlen, rotary_dim = cos.shape
|
200 |
-
rotary_dim *= 2
|
201 |
-
assert rotary_dim <= headdim
|
202 |
-
assert seqlen <= rotary_seqlen
|
203 |
-
|
204 |
-
cos_k = cos if cos_k is None else cos_k
|
205 |
-
sin_k = sin if sin_k is None else sin_k
|
206 |
-
assert (
|
207 |
-
sin.shape == cos_k.shape == sin_k.shape == (rotary_seqlen, rotary_dim // 2)
|
208 |
-
)
|
209 |
-
|
210 |
-
q_rot = qkv[:, :, 0, :, :rotary_dim]
|
211 |
-
q_pass = qkv[:, :, 0, :, rotary_dim:]
|
212 |
-
|
213 |
-
k_rot = qkv[:, :, 1, :, :rotary_dim]
|
214 |
-
k_pass = qkv[:, :, 1, :, rotary_dim:]
|
215 |
-
|
216 |
-
# Splits the queries and keys in half
|
217 |
-
q1, q2 = q_rot.chunk(2, dim=-1)
|
218 |
-
k1, k2 = k_rot.chunk(2, dim=-1)
|
219 |
-
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(
|
220 |
-
sin[:seqlen], "s d -> s 1 d"
|
221 |
-
)
|
222 |
-
|
223 |
-
# Casts to fp32 are necessary to prevent fp16 overflow issues
|
224 |
-
q1, q2, k1, k2, c, s = [
|
225 |
-
t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]
|
226 |
-
]
|
227 |
-
|
228 |
-
# Computes the new keys and queries, recasting to original dtype
|
229 |
-
q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype)
|
230 |
-
|
231 |
-
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype)
|
232 |
-
|
233 |
-
return torch.cat(
|
234 |
-
[
|
235 |
-
torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2),
|
236 |
-
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
|
237 |
-
qkv[:, :, 2:3, :, :],
|
238 |
-
],
|
239 |
-
axis=2,
|
240 |
-
)
|
241 |
-
|
242 |
-
def forward(
|
243 |
-
self, qkv: torch.Tensor, seqlen_offset: int = 0
|
244 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
245 |
-
"""Perform the forward pass.
|
246 |
-
|
247 |
-
Args:
|
248 |
-
qkv: Query, key and value tensors of shape (batch, seqlen, nheads, headdim) or (batch, seqlen, 3, nheads, headdim).
|
249 |
-
seqlen_offset: Used in generation where the passed `qkv` is only the last token in the batch.
|
250 |
-
|
251 |
-
Returns:
|
252 |
-
New `qkv` and the cached sinusoids.
|
253 |
-
|
254 |
-
"""
|
255 |
-
|
256 |
-
self._update_cos_sin_cache(qkv, seqlen_offset)
|
257 |
-
|
258 |
-
return self.apply_rotary_emb_qkv(
|
259 |
-
qkv, self._sin_cached[seqlen_offset:], self._cos_cached[seqlen_offset:]
|
260 |
-
)
|
261 |
-
|
262 |
-
|
263 |
-
def _update_kv_cache(kv, inference_params, layer_idx):
|
264 |
-
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)
|
265 |
-
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
266 |
-
# Pre-allocate memory for key-values for inference.
|
267 |
-
num_heads, head_dim = kv.shape[-2:]
|
268 |
-
if layer_idx not in inference_params.key_value_memory_dict:
|
269 |
-
kv_cache = torch.empty(
|
270 |
-
inference_params.max_batch_size,
|
271 |
-
inference_params.max_sequence_len,
|
272 |
-
2,
|
273 |
-
num_heads,
|
274 |
-
head_dim,
|
275 |
-
dtype=kv.dtype,
|
276 |
-
device=kv.device,
|
277 |
-
)
|
278 |
-
inference_params.key_value_memory_dict[layer_idx] = kv_cache
|
279 |
-
else:
|
280 |
-
kv_cache = inference_params.key_value_memory_dict[layer_idx]
|
281 |
-
|
282 |
-
# Adjust key and value for inference
|
283 |
-
batch_start = inference_params.batch_size_offset
|
284 |
-
batch_end = batch_start + kv.shape[0]
|
285 |
-
sequence_start = inference_params.sequence_len_offset
|
286 |
-
sequence_end = sequence_start + kv.shape[1]
|
287 |
-
assert batch_end <= (
|
288 |
-
kv_cache.shape[0] if kv_cache is not None else v_cache.shape[0] # noqa
|
289 |
-
)
|
290 |
-
assert sequence_end <= (
|
291 |
-
kv_cache.shape[1] if kv_cache is not None else v_cache.shape[2] # noqa
|
292 |
-
)
|
293 |
-
|
294 |
-
assert kv_cache is not None
|
295 |
-
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
|
296 |
-
kv = kv_cache[batch_start:batch_end, :sequence_end, ...]
|
297 |
-
return kv
|
298 |
-
|
299 |
-
|
300 |
-
class MLP(nn.Module):
|
301 |
-
"""Multi-Layer Perceptron.
|
302 |
-
|
303 |
-
Reference:
|
304 |
-
Attention Is All You Need.
|
305 |
-
https://arxiv.org/pdf/1706.03762.pdf.
|
306 |
-
|
307 |
-
"""
|
308 |
-
|
309 |
-
def __init__(
|
310 |
-
self,
|
311 |
-
config: PretrainedConfig,
|
312 |
-
n_inner: Optional[int] = None,
|
313 |
-
act_fn: Optional[str] = None,
|
314 |
-
) -> None:
|
315 |
-
super().__init__()
|
316 |
-
|
317 |
-
act_fn = config.activation_function if act_fn is None else act_fn
|
318 |
-
assert act_fn in ACT2FN.keys(), f"`act_fn` must be one of: {ACT2FN.keys()}."
|
319 |
-
|
320 |
-
n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
|
321 |
-
n_inner = n_inner if n_inner is not None else 4 * config.n_embd
|
322 |
-
|
323 |
-
self.fc1 = nn.Linear(config.n_embd, n_inner)
|
324 |
-
self.fc2 = nn.Linear(n_inner, config.n_embd)
|
325 |
-
self.act = ACT2FN[act_fn]
|
326 |
-
|
327 |
-
def _load_from_state_dict(
|
328 |
-
self,
|
329 |
-
state_dict,
|
330 |
-
prefix,
|
331 |
-
local_metadata,
|
332 |
-
strict,
|
333 |
-
missing_keys,
|
334 |
-
unexpected_keys,
|
335 |
-
error_msgs,
|
336 |
-
):
|
337 |
-
old_keys = [
|
338 |
-
prefix + "fc_in.weight",
|
339 |
-
prefix + "fc_out.weight",
|
340 |
-
prefix + "fc_in.bias",
|
341 |
-
prefix + "fc_out.bias",
|
342 |
-
]
|
343 |
-
new_keys = [
|
344 |
-
prefix + "fc1.weight",
|
345 |
-
prefix + "fc2.weight",
|
346 |
-
prefix + "fc1.bias",
|
347 |
-
prefix + "fc2.bias",
|
348 |
-
]
|
349 |
-
|
350 |
-
if all(k in state_dict for k in old_keys) and not all(
|
351 |
-
k in state_dict for k in new_keys
|
352 |
-
):
|
353 |
-
# Older version of `MLP` saved with different key names.
|
354 |
-
for old_key, new_key in zip(old_keys, new_keys):
|
355 |
-
state_dict[new_key] = state_dict.pop(old_key)
|
356 |
-
|
357 |
-
return super()._load_from_state_dict(
|
358 |
-
state_dict,
|
359 |
-
prefix,
|
360 |
-
local_metadata,
|
361 |
-
strict,
|
362 |
-
missing_keys,
|
363 |
-
unexpected_keys,
|
364 |
-
error_msgs,
|
365 |
-
)
|
366 |
-
|
367 |
-
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
368 |
-
hidden_states = self.fc1(hidden_states)
|
369 |
-
hidden_states = self.act(hidden_states)
|
370 |
-
hidden_states = self.fc2(hidden_states)
|
371 |
-
|
372 |
-
return hidden_states
|
373 |
-
|
374 |
-
|
375 |
-
class FusedMLP(nn.Module):
|
376 |
-
"""Fused Multi-Layer Perceptron from `flash-attn`.
|
377 |
-
|
378 |
-
Reference:
|
379 |
-
https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/ops/fused_dense.py.
|
380 |
-
|
381 |
-
"""
|
382 |
-
|
383 |
-
def __init__(
|
384 |
-
self,
|
385 |
-
config: PretrainedConfig,
|
386 |
-
n_inner: Optional[int] = None,
|
387 |
-
act_fn: Optional[str] = None,
|
388 |
-
raise_on_missing: bool = False,
|
389 |
-
) -> None:
|
390 |
-
super().__init__()
|
391 |
-
|
392 |
-
act_fn = config.activation_function if act_fn is None else act_fn
|
393 |
-
assert act_fn in ACT2FN.keys(), f"`act_fn` must be one of: {ACT2FN.keys()}."
|
394 |
-
|
395 |
-
n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
|
396 |
-
n_inner = n_inner if n_inner is not None else 4 * config.n_embd
|
397 |
-
|
398 |
-
gelu_activations = ["gelu_new", "gelu_fast", "gelu_approx"] # noqa
|
399 |
-
activation = "gelu_approx" if act_fn in gelu_activations else "relu" # noqa
|
400 |
-
|
401 |
-
self.mlp = MLP(config, n_inner=n_inner, act_fn=act_fn)
|
402 |
-
|
403 |
-
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
404 |
-
return self.mlp(hidden_states)
|
405 |
-
|
406 |
-
|
407 |
-
class SelfAttention(nn.Module):
|
408 |
-
"""Implement the scaled dot product attention with softmax.
|
409 |
-
Adapted from https://github.com/Dao-AILab/flash-attention.
|
410 |
-
Arguments
|
411 |
-
---------
|
412 |
-
softmax_scale: The temperature to use for the softmax attention.
|
413 |
-
(default: 1/sqrt(d_keys) where d_keys is computed at
|
414 |
-
runtime)
|
415 |
-
attention_dropout: The dropout rate to apply to the attention
|
416 |
-
(default: 0.0)
|
417 |
-
"""
|
418 |
-
|
419 |
-
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
|
420 |
-
super().__init__()
|
421 |
-
self.causal = causal
|
422 |
-
self.softmax_scale = softmax_scale
|
423 |
-
self.drop = nn.Dropout(attention_dropout)
|
424 |
-
|
425 |
-
def forward(
|
426 |
-
self, qkv, causal=None, key_padding_mask=None, cu_seqlens=None, max_seqlen=None
|
427 |
-
):
|
428 |
-
"""Implements the multihead softmax attention.
|
429 |
-
Arguments
|
430 |
-
---------
|
431 |
-
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D)
|
432 |
-
causal: if passed, will override self.causal
|
433 |
-
key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
|
434 |
-
False means to mask out. (B, S)
|
435 |
-
"""
|
436 |
-
causal = self.causal if causal is None else causal
|
437 |
-
if cu_seqlens is not None:
|
438 |
-
return flash_attn_varlen_qkvpacked_func(
|
439 |
-
qkv.squeeze(0),
|
440 |
-
cu_seqlens,
|
441 |
-
max_seqlen,
|
442 |
-
dropout_p=self.drop.p,
|
443 |
-
softmax_scale=self.softmax_scale,
|
444 |
-
causal=causal,
|
445 |
-
)
|
446 |
-
else:
|
447 |
-
return flash_attn_qkvpacked_func(
|
448 |
-
qkv,
|
449 |
-
dropout_p=self.drop.p,
|
450 |
-
softmax_scale=self.softmax_scale,
|
451 |
-
causal=causal,
|
452 |
-
)
|
453 |
-
|
454 |
-
|
455 |
-
class CrossAttention(nn.Module):
|
456 |
-
"""Implement the scaled dot product attention with softmax.
|
457 |
-
Adapted from https://github.com/Dao-AILab/flash-attention.
|
458 |
-
Arguments
|
459 |
-
---------
|
460 |
-
softmax_scale: The temperature to use for the softmax attention.
|
461 |
-
(default: 1/sqrt(d_keys) where d_keys is computed at
|
462 |
-
runtime)
|
463 |
-
attention_dropout: The dropout rate to apply to the attention
|
464 |
-
(default: 0.0)
|
465 |
-
"""
|
466 |
-
|
467 |
-
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
|
468 |
-
super().__init__()
|
469 |
-
self.causal = causal
|
470 |
-
self.softmax_scale = softmax_scale
|
471 |
-
self.drop = nn.Dropout(attention_dropout)
|
472 |
-
|
473 |
-
def forward(self, q, kv, causal=None, key_padding_mask=None):
|
474 |
-
"""Implements the multihead softmax attention.
|
475 |
-
Arguments
|
476 |
-
---------
|
477 |
-
q: The tensor containing the query. (B, Sq, H, D)
|
478 |
-
kv: The tensor containing the key and value. (B, Sk, 2, H, D)
|
479 |
-
causal: if passed, will override self.causal
|
480 |
-
key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
|
481 |
-
False means to mask out. (B, Sk)
|
482 |
-
"""
|
483 |
-
causal = self.causal if causal is None else causal
|
484 |
-
return flash_attn_kvpacked_func(
|
485 |
-
q,
|
486 |
-
kv,
|
487 |
-
dropout_p=self.drop.p,
|
488 |
-
softmax_scale=self.softmax_scale,
|
489 |
-
causal=causal,
|
490 |
-
)
|
491 |
-
|
492 |
-
|
493 |
-
def find_mha_dims(
|
494 |
-
config: PretrainedConfig,
|
495 |
-
n_head: Optional[int] = None,
|
496 |
-
head_dim: Optional[int] = None,
|
497 |
-
) -> Tuple[int, int]:
|
498 |
-
"""Validate and return the number of heads and head dimension for multi-head attention.
|
499 |
-
|
500 |
-
Args:
|
501 |
-
config: Model configuration.
|
502 |
-
n_head: Number of heads.
|
503 |
-
head_dim: Head dimension.
|
504 |
-
|
505 |
-
Returns:
|
506 |
-
Number of heads and head dimension.
|
507 |
-
|
508 |
-
"""
|
509 |
-
|
510 |
-
assert all(
|
511 |
-
hasattr(config, attr) for attr in ["n_embd", "n_head"]
|
512 |
-
), "`config` must have `n_embd` and `n_head` attributes."
|
513 |
-
|
514 |
-
if head_dim is None:
|
515 |
-
assert (
|
516 |
-
config.n_embd % config.n_head == 0
|
517 |
-
), f"Hidden size ({config.n_embd}) must be divisible by the number of heads ({config.n_head})."
|
518 |
-
|
519 |
-
if n_head is None and head_dim is None:
|
520 |
-
head_dim = config.n_embd // config.n_head
|
521 |
-
n_head = config.n_head
|
522 |
-
elif n_head is None or head_dim is None:
|
523 |
-
raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")
|
524 |
-
|
525 |
-
return n_head, head_dim
|
526 |
-
|
527 |
-
|
528 |
-
class MHA(nn.Module):
|
529 |
-
"""Multi-head attention layer.
|
530 |
-
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
531 |
-
|
532 |
-
def __init__(
|
533 |
-
self,
|
534 |
-
config: PretrainedConfig,
|
535 |
-
rotary_dim: Optional[int] = None,
|
536 |
-
n_head: Optional[int] = None,
|
537 |
-
head_dim: Optional[int] = None,
|
538 |
-
bias: Optional[bool] = True,
|
539 |
-
dropout: Optional[float] = 0.0,
|
540 |
-
softmax_scale: Optional[float] = None,
|
541 |
-
causal: Optional[bool] = True,
|
542 |
-
layer_idx: Optional[int] = None,
|
543 |
-
rotary_emb_scale_base: Optional[float] = None,
|
544 |
-
return_residual: Optional[bool] = False,
|
545 |
-
checkpointing: Optional[bool] = False,
|
546 |
-
device: Optional[str] = None,
|
547 |
-
dtype: Optional[torch.dtype] = None,
|
548 |
-
fused_dense: Optional[bool] = True,
|
549 |
-
flash_attn: Optional[bool] = True,
|
550 |
-
cutlass_attn: Optional[bool] = False,
|
551 |
-
flash_rotary: Optional[bool] = True,
|
552 |
-
raise_on_missing: Optional[bool] = False,
|
553 |
-
) -> None:
|
554 |
-
super().__init__()
|
555 |
-
|
556 |
-
factory_kwargs = {"device": device, "dtype": dtype}
|
557 |
-
n_head, head_dim = find_mha_dims(config, n_head, head_dim)
|
558 |
-
|
559 |
-
self.hidden_size = config.n_embd
|
560 |
-
self.n_head = n_head
|
561 |
-
self.head_dim = head_dim
|
562 |
-
self.op_size = n_head * head_dim
|
563 |
-
|
564 |
-
self.causal = causal
|
565 |
-
self.layer_idx = layer_idx
|
566 |
-
self.rotary_emb_dim = (
|
567 |
-
rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0)
|
568 |
-
)
|
569 |
-
self.fused_dense = fused_dense
|
570 |
-
self.flash_attn = flash_attn
|
571 |
-
self.cutlass_attn = cutlass_attn
|
572 |
-
self.flash_rotary = flash_rotary
|
573 |
-
self.return_residual = return_residual
|
574 |
-
self.checkpointing = checkpointing
|
575 |
-
|
576 |
-
if self.rotary_emb_dim > 0:
|
577 |
-
rotary_kwargs = {"device": device}
|
578 |
-
if rotary_emb_scale_base is not None and rotary_emb_scale_base > 0.0:
|
579 |
-
rotary_kwargs["scale_base"] = rotary_emb_scale_base
|
580 |
-
|
581 |
-
self.rotary_emb = RotaryEmbedding(self.rotary_emb_dim, **rotary_kwargs)
|
582 |
-
else:
|
583 |
-
pass
|
584 |
-
|
585 |
-
self.Wqkv = nn.Linear(
|
586 |
-
self.hidden_size, 3 * self.op_size, bias=bias, **factory_kwargs
|
587 |
-
)
|
588 |
-
self.out_proj = nn.Linear(
|
589 |
-
self.op_size, self.hidden_size, bias=bias, **factory_kwargs
|
590 |
-
)
|
591 |
-
|
592 |
-
self.inner_attn = SelfAttention(
|
593 |
-
causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout
|
594 |
-
)
|
595 |
-
self.inner_cross_attn = CrossAttention(
|
596 |
-
causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout
|
597 |
-
)
|
598 |
-
|
599 |
-
def _update_kv_cache(
|
600 |
-
self, kv: torch.FloatTensor, inference_params: InferenceParams
|
601 |
-
) -> None:
|
602 |
-
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)
|
603 |
-
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
604 |
-
|
605 |
-
assert (
|
606 |
-
self.layer_idx is not None
|
607 |
-
), "Generation requires layer_idx in the constructor"
|
608 |
-
|
609 |
-
return _update_kv_cache(kv, inference_params, self.layer_idx)
|
610 |
-
|
611 |
-
def forward(
|
612 |
-
self,
|
613 |
-
x: torch.FloatTensor,
|
614 |
-
x_kv: Optional[torch.FloatTensor] = None,
|
615 |
-
key_padding_mask: Optional[torch.BoolTensor] = None,
|
616 |
-
cu_seqlens: Optional[torch.LongTensor] = None,
|
617 |
-
max_seqlen: Optional[int] = None,
|
618 |
-
mixer_subset: Optional[torch.LongTensor] = None,
|
619 |
-
past_cache: Optional[InferenceParams] = None,
|
620 |
-
**kwargs,
|
621 |
-
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
622 |
-
"""Perform the forward pass.
|
623 |
-
|
624 |
-
Args:
|
625 |
-
x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if
|
626 |
-
cu_seqlens is None and max_seqlen is None, else (total, hidden_dim) where total
|
627 |
-
is the is the sum of the sequence lengths in the batch.
|
628 |
-
x_kv: (batch, seqlen, hidden_dim), only applicable for cross-attention. If None, use x.
|
629 |
-
key_padding_mask: boolean mask, True means to keep, False means to mask out.
|
630 |
-
(batch, seqlen). Only applicable when not using FlashAttention.
|
631 |
-
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
632 |
-
of the sequences in the batch, used to index into x. Only applicable when using
|
633 |
-
FlashAttention.
|
634 |
-
max_seqlen: int. Maximum sequence length in the batch.
|
635 |
-
mixer_subset: for cross-attention only. If not None, will take a subset of x
|
636 |
-
before applying the query projection. Useful for e.g., ViT where we only care
|
637 |
-
about the CLS token in the last layer.
|
638 |
-
past_cache: For generation only.
|
639 |
-
|
640 |
-
Returns:
|
641 |
-
(batch, seqlen, hidden_dim) if cu_seqlens is None and max_seqlen is None,
|
642 |
-
else (total, hidden_dim) where total is the is the sum of the sequence lengths
|
643 |
-
in the batch.
|
644 |
-
|
645 |
-
"""
|
646 |
-
|
647 |
-
if cu_seqlens is not None:
|
648 |
-
assert max_seqlen is not None
|
649 |
-
assert key_padding_mask is None
|
650 |
-
assert self.flash_attn
|
651 |
-
# assert self.rotary_emb_dim == 0
|
652 |
-
|
653 |
-
if key_padding_mask is not None:
|
654 |
-
assert cu_seqlens is None
|
655 |
-
assert max_seqlen is None
|
656 |
-
assert not self.flash_attn
|
657 |
-
|
658 |
-
if past_cache is not None:
|
659 |
-
assert key_padding_mask is None
|
660 |
-
assert cu_seqlens is None and max_seqlen is None
|
661 |
-
|
662 |
-
attn_kwargs = {"key_padding_mask": key_padding_mask}
|
663 |
-
|
664 |
-
assert x_kv is None and mixer_subset is None
|
665 |
-
|
666 |
-
qkv = self.Wqkv(x)
|
667 |
-
qkv = rearrange(
|
668 |
-
qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim
|
669 |
-
)
|
670 |
-
|
671 |
-
if past_cache is None:
|
672 |
-
if self.rotary_emb_dim > 0:
|
673 |
-
qkv = self.rotary_emb(qkv)
|
674 |
-
context = self.inner_attn(
|
675 |
-
qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen, **attn_kwargs
|
676 |
-
)
|
677 |
-
|
678 |
-
else:
|
679 |
-
if self.rotary_emb_dim > 0:
|
680 |
-
qkv = self.rotary_emb(qkv, seqlen_offset=past_cache.sequence_len_offset)
|
681 |
-
q = qkv[:, :, 0]
|
682 |
-
kv = self._update_kv_cache(qkv[:, :, 1:], past_cache)
|
683 |
-
# If we're processing the prompt, causal=None (use self.causal).
|
684 |
-
# If we're decoding, then causal=False.
|
685 |
-
causal = None if past_cache.sequence_len_offset == 0 else False
|
686 |
-
context = self.inner_cross_attn(q, kv, causal=causal)
|
687 |
-
|
688 |
-
out = rearrange(context, "... h d -> ... (h d)")
|
689 |
-
out = self.out_proj(out)
|
690 |
-
|
691 |
-
return out if not self.return_residual else (out, x)
|
692 |
-
|
693 |
-
|
694 |
-
class ParallelBlock(nn.Module):
|
695 |
-
"""Parallel block.
|
696 |
-
|
697 |
-
This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen).
|
698 |
-
|
699 |
-
"""
|
700 |
-
|
701 |
-
def __init__(
|
702 |
-
self,
|
703 |
-
config: PretrainedConfig,
|
704 |
-
mixer: Optional[Dict[str, Any]] = None,
|
705 |
-
mlp: Optional[Dict[str, Any]] = None,
|
706 |
-
block_idx: Optional[int] = None,
|
707 |
-
) -> None:
|
708 |
-
super().__init__()
|
709 |
-
|
710 |
-
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
711 |
-
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
712 |
-
self.block_idx = block_idx
|
713 |
-
|
714 |
-
self.mixer = MHA(config, layer_idx=block_idx)
|
715 |
-
self.mlp = MLP(config)
|
716 |
-
|
717 |
-
def forward(
|
718 |
-
self,
|
719 |
-
hidden_states: torch.FloatTensor,
|
720 |
-
past_cache: Optional[torch.FloatTensor] = None,
|
721 |
-
cu_seqlens: Optional[torch.LongTensor] = None,
|
722 |
-
max_seqlen: Optional[int] = None,
|
723 |
-
) -> torch.FloatTensor:
|
724 |
-
residual = hidden_states
|
725 |
-
hidden_states = self.ln(hidden_states)
|
726 |
-
|
727 |
-
attn_outputs = self.mixer(
|
728 |
-
hidden_states,
|
729 |
-
past_cache=past_cache,
|
730 |
-
cu_seqlens=cu_seqlens,
|
731 |
-
max_seqlen=max_seqlen,
|
732 |
-
)
|
733 |
-
if isinstance(attn_outputs, tuple):
|
734 |
-
attn_outputs = attn_outputs[0]
|
735 |
-
|
736 |
-
attn_outputs = self.resid_dropout(attn_outputs)
|
737 |
-
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
|
738 |
-
|
739 |
-
hidden_states = attn_outputs + feed_forward_hidden_states + residual
|
740 |
-
|
741 |
-
return hidden_states
|
742 |
-
|
743 |
-
|
744 |
-
class CausalLMHead(nn.Module):
|
745 |
-
"""Causal Language Modeling head.
|
746 |
-
|
747 |
-
Reference:
|
748 |
-
Improving Language Understanding by Generative Pre-Training.
|
749 |
-
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
|
750 |
-
|
751 |
-
"""
|
752 |
-
|
753 |
-
def __init__(self, config: PretrainedConfig) -> None:
|
754 |
-
super().__init__()
|
755 |
-
|
756 |
-
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
757 |
-
self.linear = nn.Linear(config.n_embd, config.vocab_size)
|
758 |
-
|
759 |
-
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
760 |
-
hidden_states = self.ln(hidden_states)
|
761 |
-
logits = self.linear(hidden_states).to(torch.float32)
|
762 |
-
|
763 |
-
return logits
|
764 |
-
|
765 |
-
|
766 |
-
class CausalLMLoss(nn.Module):
|
767 |
-
"""Causal Language Modeling loss.
|
768 |
-
|
769 |
-
Reference:
|
770 |
-
Improving Language Understanding by Generative Pre-Training.
|
771 |
-
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
|
772 |
-
|
773 |
-
"""
|
774 |
-
|
775 |
-
def __init__(self, shift_labels: Optional[bool] = True) -> None:
|
776 |
-
super().__init__()
|
777 |
-
|
778 |
-
self.shift_labels = shift_labels
|
779 |
-
self.loss_fct = nn.CrossEntropyLoss()
|
780 |
-
|
781 |
-
def forward(
|
782 |
-
self, logits: torch.FloatTensor, labels: torch.LongTensor
|
783 |
-
) -> torch.FloatTensor:
|
784 |
-
if self.shift_labels:
|
785 |
-
logits = logits[..., :-1, :].contiguous()
|
786 |
-
labels = labels[..., 1:].contiguous()
|
787 |
-
|
788 |
-
loss = self.loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
789 |
-
|
790 |
-
return loss
|
791 |
-
|
792 |
-
|
793 |
-
class MixFormerSequentialPreTrainedModel(PreTrainedModel):
|
794 |
-
"""MixFormer (sequential for DeepSpeed) pre-trained model."""
|
795 |
-
|
796 |
-
config_class = MixFormerSequentialConfig
|
797 |
-
base_model_prefix = "transformer"
|
798 |
-
supports_gradient_checkpointing = True
|
799 |
-
|
800 |
-
def __init__(self, *inputs, **kwargs) -> None:
|
801 |
-
super().__init__(*inputs, **kwargs)
|
802 |
-
|
803 |
-
def prepare_inputs_for_generation(
|
804 |
-
self, input_ids, past_key_values=None, **kwargs
|
805 |
-
) -> Dict[str, Any]:
|
806 |
-
if "use_cache" in kwargs and not kwargs["use_cache"]:
|
807 |
-
return {"input_ids": input_ids}
|
808 |
-
|
809 |
-
if past_key_values is None or not (
|
810 |
-
isinstance(past_key_values, InferenceParams)
|
811 |
-
):
|
812 |
-
past_key_values = InferenceParams(
|
813 |
-
max_batch_size=input_ids.shape[0],
|
814 |
-
max_sequence_len=self.config.n_positions,
|
815 |
-
sequence_len_offset=0,
|
816 |
-
batch_size_offset=0,
|
817 |
-
fused_ft_kernel=False,
|
818 |
-
key_value_memory_dict={},
|
819 |
-
)
|
820 |
-
else:
|
821 |
-
# assume past_key_values has cached all but last token in input_ids
|
822 |
-
past_key_values.sequence_len_offset = len(input_ids[0]) - 1
|
823 |
-
input_ids = input_ids[:, -1].unsqueeze(-1)
|
824 |
-
|
825 |
-
return {"input_ids": input_ids, "past_key_values": past_key_values, **kwargs}
|
826 |
-
|
827 |
-
|
828 |
-
class PackedSequential(nn.Sequential):
|
829 |
-
def forward(
|
830 |
-
self,
|
831 |
-
input,
|
832 |
-
cu_seqlens: Optional[torch.LongTensor] = None,
|
833 |
-
max_seqlen: Optional[int] = None,
|
834 |
-
):
|
835 |
-
for module in self:
|
836 |
-
sig = inspect.signature(module.forward)
|
837 |
-
if "cu_seqlens" in sig.parameters:
|
838 |
-
input = module(input, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen)
|
839 |
-
else:
|
840 |
-
input = module(input)
|
841 |
-
return input
|
842 |
-
|
843 |
-
|
844 |
-
class MixFormerSequentialForCausalLM(MixFormerSequentialPreTrainedModel):
|
845 |
-
"""MixFormer (sequential for DeepSpeed) for Causal Language Modeling."""
|
846 |
-
|
847 |
-
_keys_to_ignore_on_load_missing = [""]
|
848 |
-
_keys_to_ignore_on_load_unexpected = [
|
849 |
-
r"layers\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"
|
850 |
-
]
|
851 |
-
_no_split_modules = ["ParallelBlock"]
|
852 |
-
|
853 |
-
def __init__(self, config: MixFormerSequentialConfig) -> None:
|
854 |
-
super().__init__(config)
|
855 |
-
|
856 |
-
modules = [Embedding(config)]
|
857 |
-
block_config = config.architecture
|
858 |
-
|
859 |
-
if not isinstance(block_config, list):
|
860 |
-
block_config = [block_config for _ in range(config.n_layer)]
|
861 |
-
|
862 |
-
if config.n_layer != len(block_config):
|
863 |
-
config.n_layer = len(block_config)
|
864 |
-
|
865 |
-
for block_idx, block in enumerate(block_config):
|
866 |
-
# `block_cls` with `legacy` value is for backward compatibility
|
867 |
-
# `path` key is for backward compatibility
|
868 |
-
block = copy.deepcopy(block) or {"block_cls": "parallel"}
|
869 |
-
block.pop("path", None) or block.pop("block_cls", None)
|
870 |
-
|
871 |
-
block["block_idx"] = block_idx
|
872 |
-
modules.append(ParallelBlock(config, **block))
|
873 |
-
|
874 |
-
modules.append(CausalLMHead(config))
|
875 |
-
|
876 |
-
self.layers = PackedSequential(*modules)
|
877 |
-
self.loss = CausalLMLoss()
|
878 |
-
|
879 |
-
self.post_init()
|
880 |
-
|
881 |
-
def get_input_embeddings(self) -> nn.Embedding:
|
882 |
-
return self.layers[0].wte
|
883 |
-
|
884 |
-
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
|
885 |
-
self.layers[0].wte = new_embeddings
|
886 |
-
|
887 |
-
def get_output_embeddings(self) -> nn.Linear:
|
888 |
-
return self.layers[-1].linear
|
889 |
-
|
890 |
-
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
|
891 |
-
self.layers[-1].linear = new_embeddings
|
892 |
-
|
893 |
-
def forward(
|
894 |
-
self,
|
895 |
-
input_ids: torch.LongTensor,
|
896 |
-
labels: Optional[torch.LongTensor] = None,
|
897 |
-
past_key_values: Optional[torch.FloatTensor] = None,
|
898 |
-
position_ids: Optional[torch.LongTensor] = None,
|
899 |
-
**kwargs,
|
900 |
-
) -> CausalLMOutputWithPast:
|
901 |
-
cu_seqlens: Optional[torch.LongTensor] = None
|
902 |
-
max_seqlen: Optional[int] = None
|
903 |
-
if position_ids is not None:
|
904 |
-
batch_size, seq_length = input_ids.shape
|
905 |
-
position_ids = position_ids.view(-1, seq_length).long()
|
906 |
-
cu_seqlens, max_seqlen = get_cu_seqlens_from_pos_ids(position_ids)
|
907 |
-
cu_seqlens = cu_seqlens.squeeze()
|
908 |
-
|
909 |
-
if not past_key_values:
|
910 |
-
lm_logits = self.layers(
|
911 |
-
input_ids, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen
|
912 |
-
)
|
913 |
-
else:
|
914 |
-
hidden_layer = self.layers[0](input_ids)
|
915 |
-
for module in self.layers[1:-1]:
|
916 |
-
hidden_layer = module(
|
917 |
-
hidden_layer,
|
918 |
-
past_cache=past_key_values,
|
919 |
-
cu_seqlens=cu_seqlens,
|
920 |
-
max_seqlen=max_seqlen,
|
921 |
-
)
|
922 |
-
lm_logits = self.layers[-1](hidden_layer)
|
923 |
-
|
924 |
-
loss = None
|
925 |
-
if labels is not None:
|
926 |
-
loss = self.loss(lm_logits, labels)
|
927 |
-
|
928 |
-
return CausalLMOutputWithPast(
|
929 |
-
loss=loss, logits=lm_logits, past_key_values=past_key_values
|
930 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/axolotl/models/phi/modeling_phi.py
DELETED
@@ -1,1092 +0,0 @@
|
|
1 |
-
# pylint: skip-file
|
2 |
-
# Copyright (c) Microsoft Corporation.
|
3 |
-
# Licensed under the MIT license.
|
4 |
-
#
|
5 |
-
# Copyright (c) 2022, Tri Dao, trid@cs.stanford.edu.
|
6 |
-
# Licensed under the BSD 3-Clause License.
|
7 |
-
|
8 |
-
from __future__ import annotations
|
9 |
-
|
10 |
-
import math
|
11 |
-
from dataclasses import dataclass, field
|
12 |
-
from typing import Any, Callable, Dict, Optional, Tuple, Union
|
13 |
-
|
14 |
-
import torch
|
15 |
-
import torch.nn as nn
|
16 |
-
from einops import rearrange, repeat
|
17 |
-
from torch.utils.checkpoint import checkpoint
|
18 |
-
from transformers import PretrainedConfig, PreTrainedModel
|
19 |
-
from transformers.activations import ACT2FN
|
20 |
-
from transformers.modeling_outputs import CausalLMOutputWithPast
|
21 |
-
|
22 |
-
from .configuration_phi import PhiConfig
|
23 |
-
|
24 |
-
try:
|
25 |
-
from flash_attn.bert_padding import pad_input, unpad_input
|
26 |
-
from flash_attn.layers.rotary import RotaryEmbedding as FlashRotaryEmbedding
|
27 |
-
from flash_attn.modules.mha import FlashCrossAttention, FlashSelfAttention
|
28 |
-
except ImportError:
|
29 |
-
pad_input, unpad_input = None, None
|
30 |
-
FlashRotaryEmbedding = None
|
31 |
-
FlashSelfAttention, FlashCrossAttention = None, None
|
32 |
-
|
33 |
-
# this is in a seperate try/except block since sometimes fused_dense isn't available
|
34 |
-
# and it shouldn't completely disable flash attn when it isn't
|
35 |
-
try:
|
36 |
-
from flash_attn.ops.fused_dense import FusedDense
|
37 |
-
except ImportError:
|
38 |
-
FusedDense = None
|
39 |
-
|
40 |
-
|
41 |
-
@dataclass
|
42 |
-
class InferenceParams:
|
43 |
-
"""Inference parameters passed to model to efficiently calculate
|
44 |
-
and store context during inference.
|
45 |
-
|
46 |
-
Reference:
|
47 |
-
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/generation.py.
|
48 |
-
|
49 |
-
Args:
|
50 |
-
max_seqlen: Maximum sequence length.
|
51 |
-
max_batch_size: Maximum batch size.
|
52 |
-
seqlen_offset: Sequence length offset.
|
53 |
-
batch_size_offset: Batch size offset.
|
54 |
-
key_value_memory_dict: Key value memory dictionary.
|
55 |
-
lengths_per_sample: Lengths per sample.
|
56 |
-
|
57 |
-
"""
|
58 |
-
|
59 |
-
max_seqlen: int = field(metadata={"help": "Maximum sequence length."})
|
60 |
-
|
61 |
-
max_batch_size: int = field(metadata={"help": "Maximum batch size."})
|
62 |
-
|
63 |
-
seqlen_offset: int = field(default=0, metadata={"help": "Sequence length offset."})
|
64 |
-
|
65 |
-
batch_size_offset: int = field(default=0, metadata={"help": "Batch size offset."})
|
66 |
-
|
67 |
-
key_value_memory_dict: Dict[str, Any] = field(
|
68 |
-
default_factory=dict, metadata={"help": "Key value memory dictionary."}
|
69 |
-
)
|
70 |
-
|
71 |
-
lengths_per_sample: torch.Tensor = field(
|
72 |
-
default=None, metadata={"help": "Lengths per sample."}
|
73 |
-
)
|
74 |
-
|
75 |
-
|
76 |
-
class Embedding(nn.Module):
|
77 |
-
"""Token embedding with dropout."""
|
78 |
-
|
79 |
-
def __init__(self, config: PretrainedConfig) -> None:
|
80 |
-
super().__init__()
|
81 |
-
|
82 |
-
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
|
83 |
-
self.drop = nn.Dropout(config.embd_pdrop)
|
84 |
-
|
85 |
-
def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
|
86 |
-
input_shape = input_ids.size()
|
87 |
-
input_ids = input_ids.view(-1, input_shape[-1])
|
88 |
-
|
89 |
-
hidden_states = self.wte(input_ids)
|
90 |
-
hidden_states = self.drop(hidden_states)
|
91 |
-
|
92 |
-
return hidden_states
|
93 |
-
|
94 |
-
|
95 |
-
def _apply_rotary_emb(
|
96 |
-
x: torch.FloatTensor,
|
97 |
-
cos: torch.FloatTensor,
|
98 |
-
sin: torch.FloatTensor,
|
99 |
-
) -> torch.FloatTensor:
|
100 |
-
_, seqlen, _, _ = x.shape
|
101 |
-
_, rotary_dim = cos.shape
|
102 |
-
rotary_dim *= 2
|
103 |
-
|
104 |
-
x_rot = x[:, :, :, :rotary_dim]
|
105 |
-
x_pass = x[:, :, :, rotary_dim:]
|
106 |
-
|
107 |
-
x1, x2 = x_rot.chunk(2, dim=-1)
|
108 |
-
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(
|
109 |
-
sin[:seqlen], "s d -> s 1 d"
|
110 |
-
)
|
111 |
-
x1, x2, c, s = [t.to(dtype=torch.float32) for t in [x1, x2, c, s]]
|
112 |
-
|
113 |
-
x_rot = torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], axis=-1).to(x.dtype)
|
114 |
-
|
115 |
-
return torch.cat([x_rot, x_pass], axis=-1)
|
116 |
-
|
117 |
-
|
118 |
-
def _apply_rotary_emb_kv(
|
119 |
-
kv: torch.FloatTensor,
|
120 |
-
cos: torch.FloatTensor,
|
121 |
-
sin: torch.FloatTensor,
|
122 |
-
cos_k: Optional[torch.FloatTensor] = None,
|
123 |
-
sin_k: Optional[torch.FloatTensor] = None,
|
124 |
-
) -> torch.FloatTensor:
|
125 |
-
_, seqlen, _, _, _ = kv.shape
|
126 |
-
_, rotary_dim = cos.shape
|
127 |
-
rotary_dim *= 2
|
128 |
-
|
129 |
-
k_rot = kv[:, :, 0, :, :rotary_dim]
|
130 |
-
k_pass = kv[:, :, 0, :, rotary_dim:]
|
131 |
-
|
132 |
-
k1, k2 = k_rot.chunk(2, dim=-1)
|
133 |
-
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(
|
134 |
-
sin[:seqlen], "s d -> s 1 d"
|
135 |
-
)
|
136 |
-
k1, k2, c, s = [t.to(dtype=torch.float32) for t in [k1, k2, c, s]]
|
137 |
-
|
138 |
-
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(kv.dtype)
|
139 |
-
|
140 |
-
return torch.cat(
|
141 |
-
[
|
142 |
-
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
|
143 |
-
kv[:, :, 1:2, :, :],
|
144 |
-
],
|
145 |
-
axis=2,
|
146 |
-
)
|
147 |
-
|
148 |
-
|
149 |
-
def _apply_rotary_emb_qkv(
|
150 |
-
qkv: torch.FloatTensor,
|
151 |
-
cos: torch.FloatTensor,
|
152 |
-
sin: torch.FloatTensor,
|
153 |
-
cos_k: Optional[torch.FloatTensor] = None,
|
154 |
-
sin_k: Optional[torch.FloatTensor] = None,
|
155 |
-
) -> torch.FloatTensor:
|
156 |
-
_, seqlen, _, _, _ = qkv.shape
|
157 |
-
_, rotary_dim = cos.shape
|
158 |
-
rotary_dim *= 2
|
159 |
-
|
160 |
-
q_rot = qkv[:, :, 0, :, :rotary_dim]
|
161 |
-
q_pass = qkv[:, :, 0, :, rotary_dim:]
|
162 |
-
|
163 |
-
k_rot = qkv[:, :, 1, :, :rotary_dim]
|
164 |
-
k_pass = qkv[:, :, 1, :, rotary_dim:]
|
165 |
-
|
166 |
-
q1, q2 = q_rot.chunk(2, dim=-1)
|
167 |
-
k1, k2 = k_rot.chunk(2, dim=-1)
|
168 |
-
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(
|
169 |
-
sin[:seqlen], "s d -> s 1 d"
|
170 |
-
)
|
171 |
-
q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]]
|
172 |
-
|
173 |
-
q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype)
|
174 |
-
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype)
|
175 |
-
|
176 |
-
return torch.cat(
|
177 |
-
[
|
178 |
-
torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2),
|
179 |
-
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
|
180 |
-
qkv[:, :, 2:3, :, :],
|
181 |
-
],
|
182 |
-
axis=2,
|
183 |
-
)
|
184 |
-
|
185 |
-
|
186 |
-
class RotaryEmbedding(nn.Module):
|
187 |
-
"""Rotary positional embedding (RoPE).
|
188 |
-
|
189 |
-
Reference:
|
190 |
-
RoFormer: Enhanced Transformer with Rotary Position Embedding.
|
191 |
-
https://arxiv.org/pdf/2104.09864.pdf.
|
192 |
-
|
193 |
-
"""
|
194 |
-
|
195 |
-
def __init__(
|
196 |
-
self,
|
197 |
-
dim: int,
|
198 |
-
base: int = 10000,
|
199 |
-
scale_base: Optional[float] = None,
|
200 |
-
pos_idx_in_fp32: bool = True,
|
201 |
-
max_position_embeddings: int = 2048,
|
202 |
-
device: Optional[str] = None,
|
203 |
-
**kwargs,
|
204 |
-
) -> None:
|
205 |
-
super().__init__()
|
206 |
-
|
207 |
-
if scale_base is not None:
|
208 |
-
raise NotImplementedError
|
209 |
-
|
210 |
-
self.dim = dim
|
211 |
-
self.base = float(base)
|
212 |
-
self.scale_base = scale_base
|
213 |
-
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
214 |
-
self.max_position_embeddings = max_position_embeddings
|
215 |
-
self.device = device
|
216 |
-
|
217 |
-
# Generate and save the inverse frequency buffer (non-trainable)
|
218 |
-
inv_freq = self._compute_inv_freq(device)
|
219 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
220 |
-
|
221 |
-
# Generate and save the scale buffer (non-trainable)
|
222 |
-
scale = (
|
223 |
-
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim)
|
224 |
-
/ (1.4 * dim)
|
225 |
-
if scale_base is not None
|
226 |
-
else None
|
227 |
-
)
|
228 |
-
self.register_buffer("scale", scale, persistent=False)
|
229 |
-
|
230 |
-
# Initialize cached attributes since ONNX can't rely on dynamic initialization
|
231 |
-
self._update_cos_sin_cache(
|
232 |
-
max_position_embeddings,
|
233 |
-
device=device,
|
234 |
-
dtype=torch.float32,
|
235 |
-
)
|
236 |
-
|
237 |
-
def _compute_inv_freq(self, device: Optional[str] = None) -> torch.FloatTensor:
|
238 |
-
return 1.0 / (
|
239 |
-
self.base
|
240 |
-
** (
|
241 |
-
torch.arange(0, self.dim, 2, device=device, dtype=torch.float32)
|
242 |
-
/ self.dim
|
243 |
-
)
|
244 |
-
)
|
245 |
-
|
246 |
-
def _update_cos_sin_cache(
|
247 |
-
self,
|
248 |
-
seqlen: int,
|
249 |
-
device: Optional[str] = None,
|
250 |
-
dtype: Optional[torch.dtype] = None,
|
251 |
-
) -> None:
|
252 |
-
self._seq_len_cached = seqlen
|
253 |
-
|
254 |
-
# fp32 is preferred since the output of `torch.arange` can be quite large
|
255 |
-
# and bf16 would lose a lot of precision
|
256 |
-
if self.pos_idx_in_fp32:
|
257 |
-
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
258 |
-
if self.inv_freq.dtype != torch.float32:
|
259 |
-
inv_freq = self._compute_inv_freq(device=device)
|
260 |
-
else:
|
261 |
-
inv_freq = self.inv_freq
|
262 |
-
else:
|
263 |
-
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
264 |
-
inv_freq = self.inv_freq
|
265 |
-
|
266 |
-
# `torch.outer` is preferred since `torch.einsum` converts from fp32 to fp16 if used with AMP
|
267 |
-
freqs = torch.outer(t, inv_freq)
|
268 |
-
if self.scale is None:
|
269 |
-
self._cos_cached = torch.cos(freqs).to(dtype)
|
270 |
-
self._sin_cached = torch.sin(freqs).to(dtype)
|
271 |
-
else:
|
272 |
-
power = (
|
273 |
-
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device)
|
274 |
-
- seqlen // 2
|
275 |
-
) / self.scale_base
|
276 |
-
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
|
277 |
-
|
278 |
-
# Force the scale multiplication to happen in fp32
|
279 |
-
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
280 |
-
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
281 |
-
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
282 |
-
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
283 |
-
|
284 |
-
def forward(
|
285 |
-
self,
|
286 |
-
qkv: torch.Tensor,
|
287 |
-
kv: Optional[torch.Tensor] = None,
|
288 |
-
seqlen_offset: int = 0,
|
289 |
-
**kwargs,
|
290 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
291 |
-
if (
|
292 |
-
self._seq_len_cached < qkv.shape[1] + seqlen_offset
|
293 |
-
or self._cos_cached.device != qkv.device
|
294 |
-
or self._cos_cached.dtype != qkv.dtype
|
295 |
-
or (self.training and self._cos_cached.is_inference())
|
296 |
-
):
|
297 |
-
self._update_cos_sin_cache(
|
298 |
-
qkv.shape[1] + seqlen_offset, device=qkv.device, dtype=qkv.dtype
|
299 |
-
)
|
300 |
-
|
301 |
-
if kv is None:
|
302 |
-
return _apply_rotary_emb_qkv(
|
303 |
-
qkv,
|
304 |
-
self._cos_cached[seqlen_offset:],
|
305 |
-
self._sin_cached[seqlen_offset:],
|
306 |
-
)
|
307 |
-
else:
|
308 |
-
q = _apply_rotary_emb(
|
309 |
-
qkv,
|
310 |
-
self._cos_cached[seqlen_offset:],
|
311 |
-
self._sin_cached[seqlen_offset:],
|
312 |
-
)
|
313 |
-
kv = _apply_rotary_emb_kv(
|
314 |
-
kv,
|
315 |
-
self._cos_cached[seqlen_offset:],
|
316 |
-
self._sin_cached[seqlen_offset:],
|
317 |
-
)
|
318 |
-
|
319 |
-
return q, kv
|
320 |
-
|
321 |
-
|
322 |
-
class MLP(nn.Module):
|
323 |
-
"""Multi-Layer Perceptron.
|
324 |
-
|
325 |
-
Reference:
|
326 |
-
Attention Is All You Need.
|
327 |
-
https://arxiv.org/pdf/1706.03762.pdf.
|
328 |
-
|
329 |
-
"""
|
330 |
-
|
331 |
-
def __init__(
|
332 |
-
self,
|
333 |
-
config: PretrainedConfig,
|
334 |
-
n_inner: Optional[int] = None,
|
335 |
-
act_fn: Optional[str] = None,
|
336 |
-
) -> None:
|
337 |
-
super().__init__()
|
338 |
-
|
339 |
-
act_fn = config.activation_function if act_fn is None else act_fn
|
340 |
-
|
341 |
-
n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
|
342 |
-
n_inner = n_inner if n_inner is not None else 4 * config.n_embd
|
343 |
-
|
344 |
-
self.fc1 = nn.Linear(config.n_embd, n_inner)
|
345 |
-
self.fc2 = nn.Linear(n_inner, config.n_embd)
|
346 |
-
self.act = ACT2FN[act_fn]
|
347 |
-
|
348 |
-
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
349 |
-
hidden_states = self.fc1(hidden_states)
|
350 |
-
hidden_states = self.act(hidden_states)
|
351 |
-
hidden_states = self.fc2(hidden_states)
|
352 |
-
|
353 |
-
return hidden_states
|
354 |
-
|
355 |
-
|
356 |
-
class SelfAttention(nn.Module):
|
357 |
-
"""Self-attention layer (compatible with PyTorch).
|
358 |
-
|
359 |
-
Reference:
|
360 |
-
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
|
361 |
-
|
362 |
-
"""
|
363 |
-
|
364 |
-
def __init__(
|
365 |
-
self,
|
366 |
-
causal: bool = True,
|
367 |
-
softmax_scale: Optional[float] = None,
|
368 |
-
attention_dropout: float = 0.0,
|
369 |
-
) -> None:
|
370 |
-
super().__init__()
|
371 |
-
|
372 |
-
self.causal = causal
|
373 |
-
self.softmax_scale = softmax_scale
|
374 |
-
self.drop = nn.Dropout(attention_dropout)
|
375 |
-
|
376 |
-
@torch.autocast("cpu", enabled=False)
|
377 |
-
@torch.autocast("cuda", enabled=False)
|
378 |
-
def forward(
|
379 |
-
self,
|
380 |
-
qkv: torch.FloatTensor,
|
381 |
-
causal: bool = None,
|
382 |
-
key_padding_mask: Optional[torch.BoolTensor] = None,
|
383 |
-
**kwargs,
|
384 |
-
) -> torch.FloatTensor:
|
385 |
-
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
|
386 |
-
q, k, v = qkv.unbind(dim=2)
|
387 |
-
|
388 |
-
q = q.to(torch.float32)
|
389 |
-
k = k.to(torch.float32)
|
390 |
-
|
391 |
-
causal = self.causal if causal is None else causal
|
392 |
-
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
393 |
-
|
394 |
-
# Autocast is manually disabled to avoid `torch.einsum` performing the operation
|
395 |
-
# using float16, which might lead to overflow
|
396 |
-
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
397 |
-
|
398 |
-
if key_padding_mask is not None:
|
399 |
-
padding_mask = torch.full(
|
400 |
-
(batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device
|
401 |
-
)
|
402 |
-
padding_mask.masked_fill_(key_padding_mask, 0.0)
|
403 |
-
|
404 |
-
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
|
405 |
-
|
406 |
-
if causal:
|
407 |
-
causal_mask = torch.triu(
|
408 |
-
torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1
|
409 |
-
)
|
410 |
-
scores = scores + causal_mask.to(dtype=scores.dtype)
|
411 |
-
|
412 |
-
attention = torch.softmax(scores, dim=-1).to(v.dtype)
|
413 |
-
attention = self.drop(attention)
|
414 |
-
|
415 |
-
output = torch.einsum("bhts,bshd->bthd", attention, v)
|
416 |
-
|
417 |
-
return output
|
418 |
-
|
419 |
-
|
420 |
-
class CrossAttention(nn.Module):
|
421 |
-
"""Cross-attention layer (compatible with PyTorch).
|
422 |
-
|
423 |
-
Reference:
|
424 |
-
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
|
425 |
-
|
426 |
-
"""
|
427 |
-
|
428 |
-
def __init__(
|
429 |
-
self,
|
430 |
-
causal: bool = True,
|
431 |
-
softmax_scale: Optional[float] = None,
|
432 |
-
attention_dropout: float = 0.0,
|
433 |
-
) -> None:
|
434 |
-
super().__init__()
|
435 |
-
|
436 |
-
self.causal = causal
|
437 |
-
self.softmax_scale = softmax_scale
|
438 |
-
self.drop = nn.Dropout(attention_dropout)
|
439 |
-
|
440 |
-
@torch.autocast("cpu", enabled=False)
|
441 |
-
@torch.autocast("cuda", enabled=False)
|
442 |
-
def forward(
|
443 |
-
self,
|
444 |
-
q: torch.FloatTensor,
|
445 |
-
kv: torch.FloatTensor,
|
446 |
-
causal: bool = None,
|
447 |
-
key_padding_mask: Optional[torch.BoolTensor] = None,
|
448 |
-
**kwargs,
|
449 |
-
) -> torch.FloatTensor:
|
450 |
-
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
451 |
-
seqlen_k = kv.shape[1]
|
452 |
-
|
453 |
-
if kv.shape[3] != q.shape[2]:
|
454 |
-
kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
|
455 |
-
k, v = kv.unbind(dim=2)
|
456 |
-
|
457 |
-
q = q.to(torch.float32)
|
458 |
-
k = k.to(torch.float32)
|
459 |
-
|
460 |
-
causal = self.causal if causal is None else causal
|
461 |
-
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
462 |
-
|
463 |
-
# Autocast is manually disabled to avoid `torch.einsum` performing the operation
|
464 |
-
# using float16, which might lead to overflow
|
465 |
-
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
466 |
-
|
467 |
-
if key_padding_mask is not None:
|
468 |
-
padding_mask = torch.full(
|
469 |
-
(batch_size, seqlen_k),
|
470 |
-
-10000.0,
|
471 |
-
dtype=scores.dtype,
|
472 |
-
device=scores.device,
|
473 |
-
)
|
474 |
-
padding_mask.masked_fill_(key_padding_mask, 0.0)
|
475 |
-
|
476 |
-
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
|
477 |
-
|
478 |
-
if causal:
|
479 |
-
rows = rearrange(
|
480 |
-
torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1"
|
481 |
-
)
|
482 |
-
cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long)
|
483 |
-
causal_mask = cols > rows + seqlen_k - seqlen_q
|
484 |
-
|
485 |
-
scores = scores.masked_fill(causal_mask, -10000.0)
|
486 |
-
|
487 |
-
attention = torch.softmax(scores, dim=-1).to(v.dtype)
|
488 |
-
attention = self.drop(attention)
|
489 |
-
|
490 |
-
output = torch.einsum("bhts,bshd->bthd", attention, v)
|
491 |
-
|
492 |
-
return output
|
493 |
-
|
494 |
-
|
495 |
-
def _find_mha_dims(
|
496 |
-
config: PretrainedConfig,
|
497 |
-
n_head: Optional[int] = None,
|
498 |
-
n_head_kv: Optional[int] = None,
|
499 |
-
head_dim: Optional[int] = None,
|
500 |
-
) -> Tuple[int, int]:
|
501 |
-
if n_head is None and head_dim is None:
|
502 |
-
head_dim = config.n_embd // config.n_head
|
503 |
-
n_head = config.n_head
|
504 |
-
elif n_head is None or head_dim is None:
|
505 |
-
raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")
|
506 |
-
|
507 |
-
if n_head_kv is None:
|
508 |
-
n_head_kv = getattr(config, "n_head_kv", None) or n_head
|
509 |
-
|
510 |
-
return n_head, n_head_kv, head_dim
|
511 |
-
|
512 |
-
|
513 |
-
def _update_kv_cache(
|
514 |
-
kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int
|
515 |
-
) -> torch.FloatTensor:
|
516 |
-
num_heads, head_dim = kv.shape[-2:]
|
517 |
-
|
518 |
-
if layer_idx not in inference_params.key_value_memory_dict:
|
519 |
-
inference_params.key_value_memory_dict[layer_idx] = torch.empty(
|
520 |
-
inference_params.max_batch_size,
|
521 |
-
inference_params.max_seqlen,
|
522 |
-
2,
|
523 |
-
num_heads,
|
524 |
-
head_dim,
|
525 |
-
dtype=kv.dtype,
|
526 |
-
device=kv.device,
|
527 |
-
)
|
528 |
-
|
529 |
-
batch_start = inference_params.batch_size_offset
|
530 |
-
batch_end = batch_start + kv.shape[0]
|
531 |
-
|
532 |
-
sequence_start = inference_params.seqlen_offset
|
533 |
-
sequence_end = sequence_start + kv.shape[1]
|
534 |
-
|
535 |
-
# When the current sequence length is equal to or larger than the maximum sequence length,
|
536 |
-
# we need to concatenate the current `kv` with the cached `kv` to expand its length
|
537 |
-
if sequence_end >= inference_params.max_seqlen:
|
538 |
-
inference_params.key_value_memory_dict[layer_idx] = torch.concatenate(
|
539 |
-
(inference_params.key_value_memory_dict[layer_idx], kv), dim=1
|
540 |
-
)
|
541 |
-
|
542 |
-
inference_params.key_value_memory_dict[layer_idx][
|
543 |
-
batch_start:batch_end, sequence_start:sequence_end, ...
|
544 |
-
] = kv
|
545 |
-
kv = inference_params.key_value_memory_dict[layer_idx][
|
546 |
-
batch_start:batch_end, :sequence_end, ...
|
547 |
-
]
|
548 |
-
|
549 |
-
return kv
|
550 |
-
|
551 |
-
|
552 |
-
class MHA(nn.Module):
|
553 |
-
"""Multi-head attention layer."""
|
554 |
-
|
555 |
-
def __init__(
|
556 |
-
self,
|
557 |
-
config: PretrainedConfig,
|
558 |
-
dtype: Optional[torch.dtype] = None,
|
559 |
-
device: Optional[str] = None,
|
560 |
-
rotary_dim: Optional[int] = None,
|
561 |
-
rotary_base: float = 10000.0,
|
562 |
-
rotary_scale_base: Optional[float] = None,
|
563 |
-
n_head: Optional[int] = None,
|
564 |
-
n_head_kv: Optional[int] = None,
|
565 |
-
head_dim: Optional[int] = None,
|
566 |
-
bias: bool = True,
|
567 |
-
causal: bool = True,
|
568 |
-
softmax_scale: Optional[float] = None,
|
569 |
-
layer_idx: Optional[int] = None,
|
570 |
-
return_residual: bool = False,
|
571 |
-
checkpointing: bool = False,
|
572 |
-
) -> None:
|
573 |
-
super().__init__()
|
574 |
-
|
575 |
-
# Rotary embedding
|
576 |
-
self.rotary_dim = (
|
577 |
-
rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0)
|
578 |
-
)
|
579 |
-
if self.rotary_dim > 0:
|
580 |
-
rotary_cls = (
|
581 |
-
FlashRotaryEmbedding if config.flash_rotary else RotaryEmbedding
|
582 |
-
)
|
583 |
-
if rotary_cls is None:
|
584 |
-
rotary_cls = RotaryEmbedding
|
585 |
-
|
586 |
-
rotary_kwargs = {}
|
587 |
-
if rotary_cls is RotaryEmbedding:
|
588 |
-
rotary_kwargs["max_position_embeddings"] = config.n_positions
|
589 |
-
|
590 |
-
self.rotary_emb = rotary_cls(
|
591 |
-
self.rotary_dim,
|
592 |
-
base=rotary_base,
|
593 |
-
scale_base=rotary_scale_base,
|
594 |
-
device=device,
|
595 |
-
**rotary_kwargs,
|
596 |
-
)
|
597 |
-
|
598 |
-
# MLP
|
599 |
-
self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims(
|
600 |
-
config, n_head=n_head, n_head_kv=n_head_kv, head_dim=head_dim
|
601 |
-
)
|
602 |
-
op_size = self.head_dim * (self.n_head + 2 * self.n_head_kv)
|
603 |
-
hidden_size = config.n_embd
|
604 |
-
|
605 |
-
linear_cls = FusedDense if config.fused_dense else nn.Linear
|
606 |
-
if linear_cls is None:
|
607 |
-
linear_cls = nn.Linear
|
608 |
-
|
609 |
-
self.Wqkv = linear_cls(
|
610 |
-
hidden_size, op_size, bias=bias, device=device, dtype=dtype
|
611 |
-
)
|
612 |
-
self.out_proj = linear_cls(
|
613 |
-
hidden_size, hidden_size, bias=bias, device=device, dtype=dtype
|
614 |
-
)
|
615 |
-
|
616 |
-
# Attention
|
617 |
-
attn_cls = FlashSelfAttention if config.flash_attn else SelfAttention
|
618 |
-
if attn_cls is None:
|
619 |
-
attn_cls = SelfAttention
|
620 |
-
|
621 |
-
cross_attn_cls = FlashCrossAttention if config.flash_attn else CrossAttention
|
622 |
-
if cross_attn_cls is None:
|
623 |
-
cross_attn_cls = CrossAttention
|
624 |
-
|
625 |
-
self.inner_attn = attn_cls(
|
626 |
-
causal=causal,
|
627 |
-
softmax_scale=softmax_scale,
|
628 |
-
attention_dropout=config.attn_pdrop,
|
629 |
-
)
|
630 |
-
self.inner_cross_attn = cross_attn_cls(
|
631 |
-
causal=causal,
|
632 |
-
softmax_scale=softmax_scale,
|
633 |
-
attention_dropout=config.attn_pdrop,
|
634 |
-
)
|
635 |
-
|
636 |
-
self.flash_attn = config.flash_attn and attn_cls is FlashSelfAttention
|
637 |
-
self.layer_idx = layer_idx
|
638 |
-
self.return_residual = return_residual
|
639 |
-
self.checkpointing = checkpointing
|
640 |
-
self._gradient_checkpointing_func = None
|
641 |
-
|
642 |
-
def _forward_self_attn(
|
643 |
-
self, x: torch.FloatTensor, key_padding_mask: Optional[torch.BoolTensor]
|
644 |
-
) -> torch.FloatTensor:
|
645 |
-
qkv = self.Wqkv(x)
|
646 |
-
qkv = rearrange(
|
647 |
-
qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim
|
648 |
-
)
|
649 |
-
|
650 |
-
if self.rotary_dim > 0:
|
651 |
-
qkv = self.rotary_emb(qkv)
|
652 |
-
|
653 |
-
if self.flash_attn:
|
654 |
-
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
|
655 |
-
|
656 |
-
cu_seqlens, max_seqlen = None, None
|
657 |
-
if key_padding_mask is not None:
|
658 |
-
# If `key_padding_mask` is supplied, we need to unpad the input and retrieve
|
659 |
-
# the `cu_seqlens` and `max_seqlen` to be used by `flash-attn`
|
660 |
-
qkv, indices, cu_seqlens, max_seqlen = unpad_input(
|
661 |
-
qkv, key_padding_mask
|
662 |
-
)
|
663 |
-
|
664 |
-
if self.checkpointing and self.training:
|
665 |
-
attn_output = self._gradient_checkpointing_func(
|
666 |
-
self.inner_attn,
|
667 |
-
qkv,
|
668 |
-
cu_seqlens=cu_seqlens,
|
669 |
-
max_seqlen=max_seqlen,
|
670 |
-
use_reentrant=False,
|
671 |
-
)
|
672 |
-
else:
|
673 |
-
attn_output = self.inner_attn(
|
674 |
-
qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen
|
675 |
-
).to(qkv.device)
|
676 |
-
|
677 |
-
# If `key_padding_mask` is supplied, we need to pad the output back to the original shape
|
678 |
-
return (
|
679 |
-
pad_input(attn_output, indices, batch_size, seqlen)
|
680 |
-
if key_padding_mask is not None
|
681 |
-
else attn_output
|
682 |
-
)
|
683 |
-
|
684 |
-
if self.checkpointing and self.training:
|
685 |
-
return self._gradient_checkpointing_func(
|
686 |
-
self.inner_attn,
|
687 |
-
qkv,
|
688 |
-
key_padding_mask=key_padding_mask,
|
689 |
-
use_reentrant=False,
|
690 |
-
)
|
691 |
-
|
692 |
-
return self.inner_attn(qkv, key_padding_mask=key_padding_mask)
|
693 |
-
|
694 |
-
def _forward_cross_attn(
|
695 |
-
self,
|
696 |
-
x: torch.FloatTensor,
|
697 |
-
past_key_values: Optional[InferenceParams],
|
698 |
-
key_padding_mask: Optional[torch.BoolTensor],
|
699 |
-
) -> torch.FloatTensor:
|
700 |
-
batch_size = x.shape[0]
|
701 |
-
|
702 |
-
qkv = self.Wqkv(x)
|
703 |
-
|
704 |
-
q = qkv[..., : self.n_head * self.head_dim]
|
705 |
-
q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
|
706 |
-
|
707 |
-
kv = qkv[..., self.n_head * self.head_dim :]
|
708 |
-
kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
|
709 |
-
|
710 |
-
seqlen_offset = (
|
711 |
-
past_key_values.seqlen_offset if past_key_values is not None else 0
|
712 |
-
)
|
713 |
-
causal = None if seqlen_offset == 0 else False
|
714 |
-
if self.rotary_dim > 0:
|
715 |
-
q, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset)
|
716 |
-
|
717 |
-
if past_key_values is not None:
|
718 |
-
kv = _update_kv_cache(kv, past_key_values, self.layer_idx)
|
719 |
-
|
720 |
-
if self.flash_attn:
|
721 |
-
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
722 |
-
seqlen_k = kv.shape[1]
|
723 |
-
|
724 |
-
cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k = (
|
725 |
-
None,
|
726 |
-
None,
|
727 |
-
None,
|
728 |
-
None,
|
729 |
-
)
|
730 |
-
if key_padding_mask is not None:
|
731 |
-
kv, _, cu_seqlens_k, max_seqlen_k = unpad_input(kv, key_padding_mask)
|
732 |
-
|
733 |
-
if seqlen_q == 1:
|
734 |
-
key_padding_mask = torch.ones(batch_size, 1, device=q.device)
|
735 |
-
elif seqlen_q != seqlen_k:
|
736 |
-
key_padding_mask = key_padding_mask[:, -seqlen_q:]
|
737 |
-
|
738 |
-
q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(
|
739 |
-
q, key_padding_mask
|
740 |
-
)
|
741 |
-
|
742 |
-
if self.checkpointing and self.training:
|
743 |
-
attn_output = self._gradient_checkpointing_func(
|
744 |
-
self.inner_cross_attn,
|
745 |
-
q,
|
746 |
-
kv,
|
747 |
-
causal=causal,
|
748 |
-
cu_seqlens=cu_seqlens_q,
|
749 |
-
max_seqlen=max_seqlen_q,
|
750 |
-
cu_seqlens_k=cu_seqlens_k,
|
751 |
-
max_seqlen_k=max_seqlen_k,
|
752 |
-
use_reentrant=False,
|
753 |
-
)
|
754 |
-
else:
|
755 |
-
attn_output = self.inner_cross_attn(
|
756 |
-
q,
|
757 |
-
kv,
|
758 |
-
causal=causal,
|
759 |
-
cu_seqlens=cu_seqlens_q,
|
760 |
-
max_seqlen=max_seqlen_q,
|
761 |
-
cu_seqlens_k=cu_seqlens_k,
|
762 |
-
max_seqlen_k=max_seqlen_k,
|
763 |
-
)
|
764 |
-
|
765 |
-
return (
|
766 |
-
pad_input(attn_output, indices_q, batch_size, max_seqlen_q)
|
767 |
-
if key_padding_mask is not None
|
768 |
-
else attn_output
|
769 |
-
)
|
770 |
-
|
771 |
-
if self.checkpointing and self.training:
|
772 |
-
return self._gradient_checkpointing_func(
|
773 |
-
self.inner_cross_attn,
|
774 |
-
q,
|
775 |
-
kv,
|
776 |
-
key_padding_mask=key_padding_mask,
|
777 |
-
causal=causal,
|
778 |
-
use_reentrant=False,
|
779 |
-
)
|
780 |
-
|
781 |
-
return self.inner_cross_attn(
|
782 |
-
q, kv, key_padding_mask=key_padding_mask, causal=causal
|
783 |
-
)
|
784 |
-
|
785 |
-
def forward(
|
786 |
-
self,
|
787 |
-
x: torch.FloatTensor,
|
788 |
-
past_key_values: Optional[InferenceParams] = None,
|
789 |
-
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
|
790 |
-
**kwargs,
|
791 |
-
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
792 |
-
if attention_mask is not None:
|
793 |
-
attention_mask = attention_mask.bool()
|
794 |
-
else:
|
795 |
-
attention_mask = None
|
796 |
-
|
797 |
-
# MHA
|
798 |
-
if self.n_head == self.n_head_kv:
|
799 |
-
if past_key_values is None:
|
800 |
-
# If `past_key_values` are not supplied, we run self-attention
|
801 |
-
attn_output = self._forward_self_attn(x, attention_mask)
|
802 |
-
else:
|
803 |
-
# If `past_key_values` are supplied, it means that we might have cached values and
|
804 |
-
# could take advantage of cross-attention
|
805 |
-
attn_output = self._forward_cross_attn(
|
806 |
-
x, past_key_values, attention_mask
|
807 |
-
)
|
808 |
-
# MQA / GQA
|
809 |
-
else:
|
810 |
-
# Regardless of `past_key_values` being supplied or not, it always use cross-attention
|
811 |
-
# because `q` and `kv` lengths might be different
|
812 |
-
attn_output = self._forward_cross_attn(x, past_key_values, attention_mask)
|
813 |
-
|
814 |
-
output = rearrange(attn_output, "... h d -> ... (h d)")
|
815 |
-
output = self.out_proj(output)
|
816 |
-
|
817 |
-
return output if not self.return_residual else (output, x)
|
818 |
-
|
819 |
-
|
820 |
-
class ParallelBlock(nn.Module):
|
821 |
-
"""Parallel block.
|
822 |
-
|
823 |
-
This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen).
|
824 |
-
|
825 |
-
"""
|
826 |
-
|
827 |
-
def __init__(
|
828 |
-
self,
|
829 |
-
config: PretrainedConfig,
|
830 |
-
block_idx: Optional[int] = None,
|
831 |
-
) -> None:
|
832 |
-
super().__init__()
|
833 |
-
|
834 |
-
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
835 |
-
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
836 |
-
self.block_idx = block_idx
|
837 |
-
|
838 |
-
self.mixer = MHA(config, layer_idx=block_idx)
|
839 |
-
self.mlp = MLP(config)
|
840 |
-
self.checkpointing = False
|
841 |
-
self._gradient_checkpointing_func = None
|
842 |
-
|
843 |
-
def forward(
|
844 |
-
self,
|
845 |
-
hidden_states: torch.FloatTensor,
|
846 |
-
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
847 |
-
attention_mask: Optional[torch.BoolTensor] = None,
|
848 |
-
**kwargs,
|
849 |
-
) -> torch.FloatTensor:
|
850 |
-
def _forward(
|
851 |
-
mixer,
|
852 |
-
resid_dropout,
|
853 |
-
mlp,
|
854 |
-
ln,
|
855 |
-
hidden_states,
|
856 |
-
past_key_values,
|
857 |
-
attention_mask,
|
858 |
-
):
|
859 |
-
residual = hidden_states
|
860 |
-
hidden_states = ln(hidden_states)
|
861 |
-
|
862 |
-
attn_outputs = mixer(
|
863 |
-
hidden_states,
|
864 |
-
past_key_values=past_key_values,
|
865 |
-
attention_mask=attention_mask,
|
866 |
-
)
|
867 |
-
if isinstance(attn_outputs, tuple):
|
868 |
-
attn_outputs = attn_outputs[0]
|
869 |
-
|
870 |
-
attn_outputs = resid_dropout(attn_outputs)
|
871 |
-
feed_forward_hidden_states = resid_dropout(mlp(hidden_states))
|
872 |
-
|
873 |
-
return attn_outputs + feed_forward_hidden_states + residual
|
874 |
-
|
875 |
-
if self.training and self.checkpointing:
|
876 |
-
return self._gradient_checkpointing_func(
|
877 |
-
_forward,
|
878 |
-
self.mixer,
|
879 |
-
self.resid_dropout,
|
880 |
-
self.mlp,
|
881 |
-
self.ln,
|
882 |
-
hidden_states,
|
883 |
-
past_key_values,
|
884 |
-
attention_mask,
|
885 |
-
)
|
886 |
-
|
887 |
-
return _forward(
|
888 |
-
self.mixer,
|
889 |
-
self.resid_dropout,
|
890 |
-
self.mlp,
|
891 |
-
self.ln,
|
892 |
-
hidden_states,
|
893 |
-
past_key_values,
|
894 |
-
attention_mask,
|
895 |
-
)
|
896 |
-
|
897 |
-
|
898 |
-
class CausalLMHead(nn.Module):
|
899 |
-
"""Causal Language Modeling head.
|
900 |
-
|
901 |
-
Reference:
|
902 |
-
Improving Language Understanding by Generative Pre-Training.
|
903 |
-
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
|
904 |
-
|
905 |
-
"""
|
906 |
-
|
907 |
-
def __init__(self, config: PretrainedConfig) -> None:
|
908 |
-
super().__init__()
|
909 |
-
|
910 |
-
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
911 |
-
self.linear = nn.Linear(config.n_embd, config.vocab_size)
|
912 |
-
|
913 |
-
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
914 |
-
hidden_states = self.ln(hidden_states)
|
915 |
-
logits = self.linear(hidden_states).to(torch.float32)
|
916 |
-
|
917 |
-
return logits
|
918 |
-
|
919 |
-
|
920 |
-
class CausalLMLoss(nn.Module):
|
921 |
-
"""Causal Language Modeling loss.
|
922 |
-
|
923 |
-
Reference:
|
924 |
-
Improving Language Understanding by Generative Pre-Training.
|
925 |
-
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
|
926 |
-
|
927 |
-
"""
|
928 |
-
|
929 |
-
def __init__(self, shift_labels: bool = True) -> None:
|
930 |
-
super().__init__()
|
931 |
-
|
932 |
-
self.shift_labels = shift_labels
|
933 |
-
self.loss_fct = nn.CrossEntropyLoss()
|
934 |
-
|
935 |
-
def forward(
|
936 |
-
self, logits: torch.FloatTensor, labels: torch.LongTensor
|
937 |
-
) -> torch.FloatTensor:
|
938 |
-
if self.shift_labels:
|
939 |
-
logits = logits[..., :-1, :].contiguous()
|
940 |
-
labels = labels[..., 1:].contiguous()
|
941 |
-
|
942 |
-
loss = self.loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
943 |
-
|
944 |
-
return loss
|
945 |
-
|
946 |
-
|
947 |
-
class PhiPreTrainedModel(PreTrainedModel):
|
948 |
-
"""Phi pre-trained model."""
|
949 |
-
|
950 |
-
config_class = PhiConfig
|
951 |
-
base_model_prefix = "transformer"
|
952 |
-
supports_gradient_checkpointing = True
|
953 |
-
_no_split_modules = ["ParallelBlock"]
|
954 |
-
|
955 |
-
def __init__(self, *inputs, **kwargs) -> None:
|
956 |
-
super().__init__(*inputs, **kwargs)
|
957 |
-
|
958 |
-
def _init_weights(self, module: nn.Module) -> None:
|
959 |
-
if isinstance(module, (nn.Linear,)):
|
960 |
-
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
961 |
-
if module.bias is not None:
|
962 |
-
module.bias.data.zero_()
|
963 |
-
elif isinstance(module, nn.Embedding):
|
964 |
-
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
965 |
-
if module.padding_idx is not None:
|
966 |
-
module.weight.data[module.padding_idx].zero_()
|
967 |
-
elif isinstance(module, nn.LayerNorm):
|
968 |
-
if module.bias is not None:
|
969 |
-
module.bias.data.zero_()
|
970 |
-
module.weight.data.fill_(1.0)
|
971 |
-
|
972 |
-
def _set_gradient_checkpointing(
|
973 |
-
self, enable: bool = True, gradient_checkpointing_func: Callable = checkpoint
|
974 |
-
):
|
975 |
-
for module in self.modules():
|
976 |
-
if hasattr(module, "checkpointing"):
|
977 |
-
module._gradient_checkpointing_func = gradient_checkpointing_func
|
978 |
-
module.checkpointing = enable
|
979 |
-
|
980 |
-
def prepare_inputs_for_generation(
|
981 |
-
self,
|
982 |
-
input_ids: torch.LongTensor,
|
983 |
-
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
984 |
-
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
|
985 |
-
**kwargs,
|
986 |
-
) -> Dict[str, Any]:
|
987 |
-
if past_key_values is None or not (
|
988 |
-
isinstance(past_key_values, InferenceParams)
|
989 |
-
):
|
990 |
-
past_key_values = InferenceParams(
|
991 |
-
max_seqlen=self.config.n_positions,
|
992 |
-
max_batch_size=input_ids.shape[0],
|
993 |
-
seqlen_offset=0,
|
994 |
-
batch_size_offset=0,
|
995 |
-
key_value_memory_dict={},
|
996 |
-
lengths_per_sample=None,
|
997 |
-
)
|
998 |
-
else:
|
999 |
-
# Assume that `past_key_values` has cached all tokens up to the last token in `input_ids`
|
1000 |
-
past_key_values.seqlen_offset = input_ids.shape[1] - 1
|
1001 |
-
input_ids = input_ids[:, -1].unsqueeze(-1)
|
1002 |
-
|
1003 |
-
return {
|
1004 |
-
"input_ids": input_ids,
|
1005 |
-
"past_key_values": past_key_values,
|
1006 |
-
"attention_mask": attention_mask,
|
1007 |
-
}
|
1008 |
-
|
1009 |
-
|
1010 |
-
class PhiModel(PhiPreTrainedModel):
|
1011 |
-
"""Phi model."""
|
1012 |
-
|
1013 |
-
_keys_to_ignore_on_load_missing = [""]
|
1014 |
-
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
|
1015 |
-
|
1016 |
-
def __init__(self, config: PhiConfig) -> None:
|
1017 |
-
super().__init__(config)
|
1018 |
-
|
1019 |
-
self.embd = Embedding(config)
|
1020 |
-
self.h = nn.ModuleList(
|
1021 |
-
[ParallelBlock(config, block_idx=i) for i in range(config.n_layer)]
|
1022 |
-
)
|
1023 |
-
self.gradient_checkpointing = False
|
1024 |
-
self.post_init()
|
1025 |
-
|
1026 |
-
def get_input_embeddings(self) -> nn.Embedding:
|
1027 |
-
return self.embd.wte
|
1028 |
-
|
1029 |
-
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
|
1030 |
-
self.embd.wte = new_embeddings
|
1031 |
-
|
1032 |
-
def forward(
|
1033 |
-
self,
|
1034 |
-
input_ids: torch.LongTensor,
|
1035 |
-
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
1036 |
-
attention_mask: Optional[torch.BoolTensor] = None,
|
1037 |
-
) -> torch.FloatTensor:
|
1038 |
-
hidden_states = self.embd(input_ids)
|
1039 |
-
|
1040 |
-
for layer in self.h:
|
1041 |
-
hidden_states = layer(
|
1042 |
-
hidden_states,
|
1043 |
-
past_key_values=past_key_values,
|
1044 |
-
attention_mask=attention_mask,
|
1045 |
-
)
|
1046 |
-
|
1047 |
-
return hidden_states
|
1048 |
-
|
1049 |
-
|
1050 |
-
class PhiForCausalLM(PhiPreTrainedModel):
|
1051 |
-
"""Phi for Causal Language Modeling."""
|
1052 |
-
|
1053 |
-
_keys_to_ignore_on_load_missing = [""]
|
1054 |
-
_keys_to_ignore_on_load_unexpected = [
|
1055 |
-
r"transformer\.h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"
|
1056 |
-
]
|
1057 |
-
|
1058 |
-
def __init__(self, config: PhiConfig) -> None:
|
1059 |
-
super().__init__(config)
|
1060 |
-
|
1061 |
-
self.transformer = PhiModel(config)
|
1062 |
-
self.lm_head = CausalLMHead(config)
|
1063 |
-
self.loss = CausalLMLoss()
|
1064 |
-
|
1065 |
-
self.post_init()
|
1066 |
-
|
1067 |
-
def get_output_embeddings(self) -> nn.Linear:
|
1068 |
-
return self.lm_head.linear
|
1069 |
-
|
1070 |
-
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
|
1071 |
-
self.lm_head.linear = new_embeddings
|
1072 |
-
|
1073 |
-
def forward(
|
1074 |
-
self,
|
1075 |
-
input_ids: torch.LongTensor,
|
1076 |
-
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
1077 |
-
attention_mask: Optional[torch.BoolTensor] = None,
|
1078 |
-
labels: Optional[torch.LongTensor] = None,
|
1079 |
-
**kwargs,
|
1080 |
-
) -> CausalLMOutputWithPast:
|
1081 |
-
hidden_states = self.transformer(
|
1082 |
-
input_ids, past_key_values=past_key_values, attention_mask=attention_mask
|
1083 |
-
)
|
1084 |
-
lm_logits = self.lm_head(hidden_states)
|
1085 |
-
|
1086 |
-
loss = None
|
1087 |
-
if labels is not None:
|
1088 |
-
loss = self.loss(lm_logits, labels)
|
1089 |
-
|
1090 |
-
return CausalLMOutputWithPast(
|
1091 |
-
loss=loss, logits=lm_logits, past_key_values=past_key_values
|
1092 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/axolotl/monkeypatch/phi/__init__.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Patches to support multipack for phi2
|
3 |
+
"""
|
4 |
+
import transformers
|
5 |
+
|
6 |
+
from axolotl.monkeypatch.utils import get_unpad_data
|
7 |
+
|
8 |
+
|
9 |
+
def replace_phi_attn_with_multipack_flash_attn():
|
10 |
+
transformers.models.phi.modeling_phi._get_unpad_data = ( # pylint: disable=protected-access
|
11 |
+
get_unpad_data
|
12 |
+
)
|
src/axolotl/utils/config.py
CHANGED
@@ -364,20 +364,6 @@ def validate_config(cfg):
|
|
364 |
"`early_stopping_patience` requires that eval_steps should evenly divide save_steps."
|
365 |
)
|
366 |
|
367 |
-
if cfg.model_type == "MixFormerSequentialForCausalLM" and cfg.adapter is not None:
|
368 |
-
LOG.warning("Use AutoModelForCausalLM for phi/MixFormer models with qLoRA")
|
369 |
-
|
370 |
-
if cfg.model_config_type == "mixformer-sequential":
|
371 |
-
if cfg.sample_packing:
|
372 |
-
if cfg.adapter is not None:
|
373 |
-
LOG.warning(
|
374 |
-
"phi/MixFormer models are not currently compatible with LoRA and sample_packing"
|
375 |
-
)
|
376 |
-
if cfg.model_type == "AutoModelForCausalLM":
|
377 |
-
raise ValueError(
|
378 |
-
"`model_type: MixFormerSequentialForCausalLM` required for sample_packing"
|
379 |
-
)
|
380 |
-
|
381 |
if cfg.datasets:
|
382 |
for idx, ds_cfg in enumerate(cfg.datasets):
|
383 |
if not ds_cfg.type:
|
|
|
364 |
"`early_stopping_patience` requires that eval_steps should evenly divide save_steps."
|
365 |
)
|
366 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
if cfg.datasets:
|
368 |
for idx, ds_cfg in enumerate(cfg.datasets):
|
369 |
if not ds_cfg.type:
|
src/axolotl/utils/data.py
CHANGED
@@ -397,7 +397,7 @@ def load_tokenized_prepared_datasets(
|
|
397 |
LOG.info("shuffle merged datasets")
|
398 |
dataset = dataset.shuffle(seed=seed)
|
399 |
|
400 |
-
dataset, _ = process_datasets_for_packing(cfg, dataset, None
|
401 |
|
402 |
if cfg.local_rank == 0:
|
403 |
LOG.info(f"Saving merged prepared dataset to disk... {prepared_ds_path}")
|
|
|
397 |
LOG.info("shuffle merged datasets")
|
398 |
dataset = dataset.shuffle(seed=seed)
|
399 |
|
400 |
+
dataset, _ = process_datasets_for_packing(cfg, dataset, None)
|
401 |
|
402 |
if cfg.local_rank == 0:
|
403 |
LOG.info(f"Saving merged prepared dataset to disk... {prepared_ds_path}")
|
src/axolotl/utils/lora_embeddings.py
CHANGED
@@ -7,8 +7,6 @@ def get_linear_embedding_layers(model_type):
|
|
7 |
"""
|
8 |
returns the linear embedding layers needed for loras, dependent on the model arch
|
9 |
"""
|
10 |
-
if model_type == "phi-msft":
|
11 |
-
return ["embd.wte", "lm_head.linear"]
|
12 |
if model_type == "gpt_neox":
|
13 |
return ["embed_in", "embed_out"]
|
14 |
if model_type == "falcon":
|
|
|
7 |
"""
|
8 |
returns the linear embedding layers needed for loras, dependent on the model arch
|
9 |
"""
|
|
|
|
|
10 |
if model_type == "gpt_neox":
|
11 |
return ["embed_in", "embed_out"]
|
12 |
if model_type == "falcon":
|
src/axolotl/utils/models.py
CHANGED
@@ -169,6 +169,7 @@ def load_tokenizer(cfg):
|
|
169 |
# pylint: disable=too-many-boolean-expressions
|
170 |
if (
|
171 |
(getattr(tokenizer, k) is None or getattr(tokenizer, k) != val)
|
|
|
172 |
and cfg.adapter
|
173 |
and (
|
174 |
not cfg.lora_modules_to_save
|
@@ -342,6 +343,12 @@ def load_model(
|
|
342 |
LOG.info("patching falcon with flash attention")
|
343 |
replace_falcon_attn_with_multipack_flash_attn()
|
344 |
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
if cfg.model_config_type == "qwen2" and cfg.flash_attention and cfg.sample_packing:
|
346 |
from axolotl.monkeypatch.qwen2 import (
|
347 |
replace_qwen2_attn_with_multipack_flash_attn,
|
@@ -448,7 +455,7 @@ def load_model(
|
|
448 |
"flash_attention_2"
|
449 |
)
|
450 |
else:
|
451 |
-
if model_config.model_type in ["mixtral", "qwen2", "falcon"]:
|
452 |
model_kwargs["attn_implementation"] = "flash_attention_2"
|
453 |
model_config._attn_implementation = ( # pylint: disable=protected-access
|
454 |
"flash_attention_2"
|
@@ -458,10 +465,6 @@ def load_model(
|
|
458 |
model_config._attn_implementation = ( # pylint: disable=protected-access
|
459 |
"eager"
|
460 |
)
|
461 |
-
if model_config.model_type == "phi-msft":
|
462 |
-
model_config.flash_attn = True
|
463 |
-
model_config.flash_rotary = True
|
464 |
-
model_config.fused_dense = True
|
465 |
|
466 |
try:
|
467 |
if (
|
@@ -518,16 +521,6 @@ def load_model(
|
|
518 |
# device=cfg.device,
|
519 |
# )
|
520 |
# model.train() # sets to train instead of eval mode
|
521 |
-
elif model_type == "PhiForCausalLM" or model_config.model_type == "phi-msft":
|
522 |
-
from axolotl.models.phi import PhiForCausalLM
|
523 |
-
|
524 |
-
model = PhiForCausalLM.from_pretrained(
|
525 |
-
base_model,
|
526 |
-
config=model_config,
|
527 |
-
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
|
528 |
-
load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
|
529 |
-
**model_kwargs,
|
530 |
-
)
|
531 |
elif model_type == "MambaLMHeadModel":
|
532 |
# FIXME this is janky at best and hacked together to make it work
|
533 |
MambaLMHeadModel = fix_mamba_attn_for_loss() # pylint: disable=invalid-name
|
|
|
169 |
# pylint: disable=too-many-boolean-expressions
|
170 |
if (
|
171 |
(getattr(tokenizer, k) is None or getattr(tokenizer, k) != val)
|
172 |
+
and (len(tokenizer.encode(val)) > 1)
|
173 |
and cfg.adapter
|
174 |
and (
|
175 |
not cfg.lora_modules_to_save
|
|
|
343 |
LOG.info("patching falcon with flash attention")
|
344 |
replace_falcon_attn_with_multipack_flash_attn()
|
345 |
|
346 |
+
if cfg.model_config_type == "phi" and cfg.flash_attention and cfg.sample_packing:
|
347 |
+
from axolotl.monkeypatch.phi import replace_phi_attn_with_multipack_flash_attn
|
348 |
+
|
349 |
+
LOG.info("patching phi with flash attention")
|
350 |
+
replace_phi_attn_with_multipack_flash_attn()
|
351 |
+
|
352 |
if cfg.model_config_type == "qwen2" and cfg.flash_attention and cfg.sample_packing:
|
353 |
from axolotl.monkeypatch.qwen2 import (
|
354 |
replace_qwen2_attn_with_multipack_flash_attn,
|
|
|
455 |
"flash_attention_2"
|
456 |
)
|
457 |
else:
|
458 |
+
if model_config.model_type in ["mixtral", "qwen2", "falcon", "phi"]:
|
459 |
model_kwargs["attn_implementation"] = "flash_attention_2"
|
460 |
model_config._attn_implementation = ( # pylint: disable=protected-access
|
461 |
"flash_attention_2"
|
|
|
465 |
model_config._attn_implementation = ( # pylint: disable=protected-access
|
466 |
"eager"
|
467 |
)
|
|
|
|
|
|
|
|
|
468 |
|
469 |
try:
|
470 |
if (
|
|
|
521 |
# device=cfg.device,
|
522 |
# )
|
523 |
# model.train() # sets to train instead of eval mode
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
524 |
elif model_type == "MambaLMHeadModel":
|
525 |
# FIXME this is janky at best and hacked together to make it work
|
526 |
MambaLMHeadModel = fix_mamba_attn_for_loss() # pylint: disable=invalid-name
|
src/axolotl/utils/trainer.py
CHANGED
@@ -106,19 +106,16 @@ def drop_long_seq(sample, sequence_len=2048):
|
|
106 |
return len(sample["input_ids"]) <= sequence_len and len(sample["input_ids"]) > 0
|
107 |
|
108 |
|
109 |
-
def process_datasets_for_packing(cfg, train_dataset, eval_dataset
|
110 |
drop_long = partial(drop_long_seq, sequence_len=cfg.sequence_len)
|
111 |
with zero_first(is_main_process()):
|
112 |
if cfg.is_preprocess:
|
113 |
max_input_len = np.max(get_dataset_lengths(train_dataset))
|
114 |
LOG.debug(f"max_input_len: {max_input_len}", main_process_only=True)
|
115 |
|
116 |
-
# Phi doesn't want the attention_mask feature when training
|
117 |
if (
|
118 |
-
|
119 |
-
|
120 |
-
or cfg.model_config_type == "mamba"
|
121 |
-
):
|
122 |
LOG.info("dropping attention_mask column")
|
123 |
train_dataset = train_dataset.remove_columns("attention_mask")
|
124 |
if eval_dataset:
|
|
|
106 |
return len(sample["input_ids"]) <= sequence_len and len(sample["input_ids"]) > 0
|
107 |
|
108 |
|
109 |
+
def process_datasets_for_packing(cfg, train_dataset, eval_dataset):
|
110 |
drop_long = partial(drop_long_seq, sequence_len=cfg.sequence_len)
|
111 |
with zero_first(is_main_process()):
|
112 |
if cfg.is_preprocess:
|
113 |
max_input_len = np.max(get_dataset_lengths(train_dataset))
|
114 |
LOG.debug(f"max_input_len: {max_input_len}", main_process_only=True)
|
115 |
|
|
|
116 |
if (
|
117 |
+
cfg.is_mistral_derived_model and cfg.flash_attention
|
118 |
+
) or cfg.model_config_type == "mamba":
|
|
|
|
|
119 |
LOG.info("dropping attention_mask column")
|
120 |
train_dataset = train_dataset.remove_columns("attention_mask")
|
121 |
if eval_dataset:
|
tests/e2e/patched/test_phi_multipack.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
E2E tests for lora llama
|
3 |
+
"""
|
4 |
+
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
import unittest
|
8 |
+
from pathlib import Path
|
9 |
+
|
10 |
+
from axolotl.cli import load_datasets
|
11 |
+
from axolotl.common.cli import TrainerCliArgs
|
12 |
+
from axolotl.train import train
|
13 |
+
from axolotl.utils.config import normalize_config
|
14 |
+
from axolotl.utils.dict import DictDefault
|
15 |
+
|
16 |
+
from ..utils import with_temp_dir
|
17 |
+
|
18 |
+
LOG = logging.getLogger("axolotl.tests.e2e")
|
19 |
+
os.environ["WANDB_DISABLED"] = "true"
|
20 |
+
|
21 |
+
|
22 |
+
class TestPhiMultipack(unittest.TestCase):
|
23 |
+
"""
|
24 |
+
Test case for Phi2 models
|
25 |
+
"""
|
26 |
+
|
27 |
+
@with_temp_dir
|
28 |
+
def test_ft_packed(self, temp_dir):
|
29 |
+
# pylint: disable=duplicate-code
|
30 |
+
cfg = DictDefault(
|
31 |
+
{
|
32 |
+
"base_model": "microsoft/phi-1_5",
|
33 |
+
"model_type": "PhiForCausalLM",
|
34 |
+
"tokenizer_type": "AutoTokenizer",
|
35 |
+
"sequence_len": 1024,
|
36 |
+
"sample_packing": True,
|
37 |
+
"flash_attention": True,
|
38 |
+
"pad_to_sequence_len": True,
|
39 |
+
"load_in_8bit": False,
|
40 |
+
"adapter": None,
|
41 |
+
"val_set_size": 0.1,
|
42 |
+
"special_tokens": {
|
43 |
+
"pad_token": "<|endoftext|>",
|
44 |
+
},
|
45 |
+
"datasets": [
|
46 |
+
{
|
47 |
+
"path": "mhenrichsen/alpaca_2k_test",
|
48 |
+
"type": "alpaca",
|
49 |
+
},
|
50 |
+
],
|
51 |
+
"dataset_shard_num": 10,
|
52 |
+
"dataset_shard_idx": 0,
|
53 |
+
"num_epochs": 1,
|
54 |
+
"micro_batch_size": 1,
|
55 |
+
"gradient_accumulation_steps": 1,
|
56 |
+
"output_dir": temp_dir,
|
57 |
+
"learning_rate": 0.00001,
|
58 |
+
"optimizer": "adamw_bnb_8bit",
|
59 |
+
"lr_scheduler": "cosine",
|
60 |
+
"max_steps": 20,
|
61 |
+
"eval_steps": 10,
|
62 |
+
"save_steps": 10,
|
63 |
+
"bf16": "auto",
|
64 |
+
}
|
65 |
+
)
|
66 |
+
|
67 |
+
normalize_config(cfg)
|
68 |
+
cli_args = TrainerCliArgs()
|
69 |
+
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
|
70 |
+
|
71 |
+
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
72 |
+
assert (Path(temp_dir) / "pytorch_model.bin").exists()
|
73 |
+
|
74 |
+
@with_temp_dir
|
75 |
+
def test_qlora_packed(self, temp_dir):
|
76 |
+
# pylint: disable=duplicate-code
|
77 |
+
cfg = DictDefault(
|
78 |
+
{
|
79 |
+
"base_model": "microsoft/phi-1_5",
|
80 |
+
"model_type": "PhiForCausalLM",
|
81 |
+
"tokenizer_type": "AutoTokenizer",
|
82 |
+
"sequence_len": 1024,
|
83 |
+
"sample_packing": True,
|
84 |
+
"flash_attention": True,
|
85 |
+
"pad_to_sequence_len": True,
|
86 |
+
"load_in_8bit": False,
|
87 |
+
"adapter": "qlora",
|
88 |
+
"lora_r": 64,
|
89 |
+
"lora_alpha": 32,
|
90 |
+
"lora_dropout": 0.05,
|
91 |
+
"lora_target_linear": True,
|
92 |
+
"val_set_size": 0.1,
|
93 |
+
"special_tokens": {
|
94 |
+
"pad_token": "<|endoftext|>",
|
95 |
+
},
|
96 |
+
"datasets": [
|
97 |
+
{
|
98 |
+
"path": "mhenrichsen/alpaca_2k_test",
|
99 |
+
"type": "alpaca",
|
100 |
+
},
|
101 |
+
],
|
102 |
+
"dataset_shard_num": 10,
|
103 |
+
"dataset_shard_idx": 0,
|
104 |
+
"num_epochs": 1,
|
105 |
+
"micro_batch_size": 1,
|
106 |
+
"gradient_accumulation_steps": 1,
|
107 |
+
"output_dir": temp_dir,
|
108 |
+
"learning_rate": 0.00001,
|
109 |
+
"optimizer": "adamw_bnb_8bit",
|
110 |
+
"lr_scheduler": "cosine",
|
111 |
+
"max_steps": 20,
|
112 |
+
"eval_steps": 10,
|
113 |
+
"save_steps": 10,
|
114 |
+
"bf16": "auto",
|
115 |
+
}
|
116 |
+
)
|
117 |
+
|
118 |
+
normalize_config(cfg)
|
119 |
+
cli_args = TrainerCliArgs()
|
120 |
+
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
|
121 |
+
|
122 |
+
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
123 |
+
assert (Path(temp_dir) / "adapter_model.bin").exists()
|
tests/e2e/test_phi.py
CHANGED
@@ -7,9 +7,6 @@ import os
|
|
7 |
import unittest
|
8 |
from pathlib import Path
|
9 |
|
10 |
-
import pytest
|
11 |
-
from transformers.utils import is_torch_bf16_gpu_available
|
12 |
-
|
13 |
from axolotl.cli import load_datasets
|
14 |
from axolotl.common.cli import TrainerCliArgs
|
15 |
from axolotl.train import train
|
@@ -27,17 +24,15 @@ class TestPhi(unittest.TestCase):
|
|
27 |
Test case for Phi2 models
|
28 |
"""
|
29 |
|
30 |
-
@pytest.mark.skip(reason="fixme later")
|
31 |
@with_temp_dir
|
32 |
-
def
|
33 |
# pylint: disable=duplicate-code
|
34 |
cfg = DictDefault(
|
35 |
{
|
36 |
-
"base_model": "microsoft/phi-
|
37 |
-
"trust_remote_code": True,
|
38 |
"model_type": "AutoModelForCausalLM",
|
39 |
"tokenizer_type": "AutoTokenizer",
|
40 |
-
"sequence_len":
|
41 |
"sample_packing": False,
|
42 |
"load_in_8bit": False,
|
43 |
"adapter": None,
|
@@ -64,13 +59,9 @@ class TestPhi(unittest.TestCase):
|
|
64 |
"max_steps": 10,
|
65 |
"save_steps": 10,
|
66 |
"eval_steps": 10,
|
67 |
-
"
|
68 |
}
|
69 |
)
|
70 |
-
if is_torch_bf16_gpu_available():
|
71 |
-
cfg.bf16 = True
|
72 |
-
else:
|
73 |
-
cfg.fp16 = True
|
74 |
normalize_config(cfg)
|
75 |
cli_args = TrainerCliArgs()
|
76 |
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
|
@@ -78,25 +69,24 @@ class TestPhi(unittest.TestCase):
|
|
78 |
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
79 |
assert (Path(temp_dir) / "pytorch_model.bin").exists()
|
80 |
|
81 |
-
@pytest.mark.skip(reason="multipack no longer supported atm")
|
82 |
@with_temp_dir
|
83 |
-
def
|
84 |
# pylint: disable=duplicate-code
|
85 |
cfg = DictDefault(
|
86 |
{
|
87 |
-
"base_model": "microsoft/phi-
|
88 |
-
"
|
89 |
-
"model_type": "PhiForCausalLM",
|
90 |
"tokenizer_type": "AutoTokenizer",
|
91 |
-
"sequence_len":
|
92 |
-
"sample_packing":
|
93 |
"load_in_8bit": False,
|
94 |
-
"adapter":
|
|
|
|
|
|
|
|
|
95 |
"val_set_size": 0.1,
|
96 |
"special_tokens": {
|
97 |
-
"unk_token": "<|endoftext|>",
|
98 |
-
"bos_token": "<|endoftext|>",
|
99 |
-
"eos_token": "<|endoftext|>",
|
100 |
"pad_token": "<|endoftext|>",
|
101 |
},
|
102 |
"datasets": [
|
@@ -112,18 +102,18 @@ class TestPhi(unittest.TestCase):
|
|
112 |
"gradient_accumulation_steps": 1,
|
113 |
"output_dir": temp_dir,
|
114 |
"learning_rate": 0.00001,
|
115 |
-
"optimizer": "
|
116 |
"lr_scheduler": "cosine",
|
|
|
|
|
|
|
|
|
|
|
117 |
}
|
118 |
)
|
119 |
-
if is_torch_bf16_gpu_available():
|
120 |
-
cfg.bf16 = True
|
121 |
-
else:
|
122 |
-
cfg.fp16 = True
|
123 |
-
|
124 |
normalize_config(cfg)
|
125 |
cli_args = TrainerCliArgs()
|
126 |
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
|
127 |
|
128 |
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
129 |
-
assert (Path(temp_dir) / "
|
|
|
7 |
import unittest
|
8 |
from pathlib import Path
|
9 |
|
|
|
|
|
|
|
10 |
from axolotl.cli import load_datasets
|
11 |
from axolotl.common.cli import TrainerCliArgs
|
12 |
from axolotl.train import train
|
|
|
24 |
Test case for Phi2 models
|
25 |
"""
|
26 |
|
|
|
27 |
@with_temp_dir
|
28 |
+
def test_phi_ft(self, temp_dir):
|
29 |
# pylint: disable=duplicate-code
|
30 |
cfg = DictDefault(
|
31 |
{
|
32 |
+
"base_model": "microsoft/phi-1_5",
|
|
|
33 |
"model_type": "AutoModelForCausalLM",
|
34 |
"tokenizer_type": "AutoTokenizer",
|
35 |
+
"sequence_len": 2048,
|
36 |
"sample_packing": False,
|
37 |
"load_in_8bit": False,
|
38 |
"adapter": None,
|
|
|
59 |
"max_steps": 10,
|
60 |
"save_steps": 10,
|
61 |
"eval_steps": 10,
|
62 |
+
"bf16": "auto",
|
63 |
}
|
64 |
)
|
|
|
|
|
|
|
|
|
65 |
normalize_config(cfg)
|
66 |
cli_args = TrainerCliArgs()
|
67 |
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
|
|
|
69 |
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
70 |
assert (Path(temp_dir) / "pytorch_model.bin").exists()
|
71 |
|
|
|
72 |
@with_temp_dir
|
73 |
+
def test_phi_qlora(self, temp_dir):
|
74 |
# pylint: disable=duplicate-code
|
75 |
cfg = DictDefault(
|
76 |
{
|
77 |
+
"base_model": "microsoft/phi-1_5",
|
78 |
+
"model_type": "AutoModelForCausalLM",
|
|
|
79 |
"tokenizer_type": "AutoTokenizer",
|
80 |
+
"sequence_len": 2048,
|
81 |
+
"sample_packing": False,
|
82 |
"load_in_8bit": False,
|
83 |
+
"adapter": "qlora",
|
84 |
+
"lora_r": 64,
|
85 |
+
"lora_alpha": 32,
|
86 |
+
"lora_dropout": 0.05,
|
87 |
+
"lora_target_linear": True,
|
88 |
"val_set_size": 0.1,
|
89 |
"special_tokens": {
|
|
|
|
|
|
|
90 |
"pad_token": "<|endoftext|>",
|
91 |
},
|
92 |
"datasets": [
|
|
|
102 |
"gradient_accumulation_steps": 1,
|
103 |
"output_dir": temp_dir,
|
104 |
"learning_rate": 0.00001,
|
105 |
+
"optimizer": "paged_adamw_8bit",
|
106 |
"lr_scheduler": "cosine",
|
107 |
+
"flash_attention": True,
|
108 |
+
"max_steps": 10,
|
109 |
+
"save_steps": 10,
|
110 |
+
"eval_steps": 10,
|
111 |
+
"bf16": "auto",
|
112 |
}
|
113 |
)
|
|
|
|
|
|
|
|
|
|
|
114 |
normalize_config(cfg)
|
115 |
cli_args = TrainerCliArgs()
|
116 |
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
|
117 |
|
118 |
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
119 |
+
assert (Path(temp_dir) / "adapter_model.bin").exists()
|
tests/test_validation.py
CHANGED
@@ -742,11 +742,11 @@ class ValidationCheckModelConfig(BaseValidation):
|
|
742 |
|
743 |
check_model_config(cfg, model_config)
|
744 |
|
745 |
-
def
|
746 |
cfg = DictDefault(
|
747 |
{"adapter": "qlora", "load_in_4bit": True, "tokens": ["<|imstart|>"]}
|
748 |
)
|
749 |
-
model_config = DictDefault({"model_type": "phi
|
750 |
|
751 |
with pytest.raises(
|
752 |
ValueError,
|
@@ -759,7 +759,7 @@ class ValidationCheckModelConfig(BaseValidation):
|
|
759 |
"adapter": "qlora",
|
760 |
"load_in_4bit": True,
|
761 |
"tokens": ["<|imstart|>"],
|
762 |
-
"lora_modules_to_save": ["
|
763 |
}
|
764 |
)
|
765 |
|
@@ -774,7 +774,7 @@ class ValidationCheckModelConfig(BaseValidation):
|
|
774 |
"adapter": "qlora",
|
775 |
"load_in_4bit": True,
|
776 |
"tokens": ["<|imstart|>"],
|
777 |
-
"lora_modules_to_save": ["
|
778 |
}
|
779 |
)
|
780 |
|
|
|
742 |
|
743 |
check_model_config(cfg, model_config)
|
744 |
|
745 |
+
def test_phi_add_tokens_adapter(self):
|
746 |
cfg = DictDefault(
|
747 |
{"adapter": "qlora", "load_in_4bit": True, "tokens": ["<|imstart|>"]}
|
748 |
)
|
749 |
+
model_config = DictDefault({"model_type": "phi"})
|
750 |
|
751 |
with pytest.raises(
|
752 |
ValueError,
|
|
|
759 |
"adapter": "qlora",
|
760 |
"load_in_4bit": True,
|
761 |
"tokens": ["<|imstart|>"],
|
762 |
+
"lora_modules_to_save": ["embd.wte", "lm_head.linear"],
|
763 |
}
|
764 |
)
|
765 |
|
|
|
774 |
"adapter": "qlora",
|
775 |
"load_in_4bit": True,
|
776 |
"tokens": ["<|imstart|>"],
|
777 |
+
"lora_modules_to_save": ["embed_tokens", "lm_head"],
|
778 |
}
|
779 |
)
|
780 |
|