let transformers handle adamw_bnb_8bit
Browse files- src/axolotl/utils/trainer.py +2 -71
src/axolotl/utils/trainer.py
CHANGED
@@ -10,19 +10,13 @@ from functools import partial
|
|
10 |
from pathlib import Path
|
11 |
from typing import Optional, Union
|
12 |
|
13 |
-
import bitsandbytes as bnb
|
14 |
import numpy as np
|
15 |
import torch.cuda
|
16 |
-
import transformers
|
17 |
from datasets import Dataset, set_caching_enabled
|
18 |
-
from torch import nn
|
19 |
from torch.optim.lr_scheduler import OneCycleLR
|
20 |
from torch.utils.data import DataLoader, DistributedSampler, RandomSampler
|
21 |
from transformers import EarlyStoppingCallback, Trainer, TrainingArguments
|
22 |
-
from transformers.trainer_pt_utils import
|
23 |
-
SequentialDistributedSampler,
|
24 |
-
get_parameter_names,
|
25 |
-
)
|
26 |
|
27 |
from axolotl.monkeypatch.relora import ReLoRACallback, ReLoRAScheduler
|
28 |
from axolotl.utils.callbacks import (
|
@@ -32,10 +26,7 @@ from axolotl.utils.callbacks import (
|
|
32 |
)
|
33 |
from axolotl.utils.collators import DataCollatorForSeq2Seq
|
34 |
from axolotl.utils.dataloader import MultipackDistributedDataloader
|
35 |
-
from axolotl.utils.schedulers import
|
36 |
-
InterpolatingLogScheduler,
|
37 |
-
get_cosine_schedule_with_quadratic_warmup,
|
38 |
-
)
|
39 |
|
40 |
LOG = logging.getLogger("axolotl")
|
41 |
|
@@ -570,66 +561,6 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer, total_num_
|
|
570 |
if Path(cfg.torchdistx_path).exists():
|
571 |
sys.path.append(cfg.torchdistx_path)
|
572 |
importlib.import_module("torchdistx")
|
573 |
-
if (
|
574 |
-
cfg.optimizer == "adamw_bnb_8bit"
|
575 |
-
and not cfg.gptq
|
576 |
-
and "deepspeed" not in training_arguments_kwargs
|
577 |
-
and not cfg.fsdp
|
578 |
-
):
|
579 |
-
decay_parameters = get_parameter_names(model, [nn.LayerNorm])
|
580 |
-
decay_parameters = [name for name in decay_parameters if "bias" not in name]
|
581 |
-
optimizer_grouped_parameters = [
|
582 |
-
{
|
583 |
-
"params": [
|
584 |
-
p
|
585 |
-
for n, p in model.named_parameters()
|
586 |
-
if (n in decay_parameters and p.requires_grad)
|
587 |
-
],
|
588 |
-
"weight_decay": training_args.weight_decay,
|
589 |
-
},
|
590 |
-
{
|
591 |
-
"params": [
|
592 |
-
p
|
593 |
-
for n, p in model.named_parameters()
|
594 |
-
if (n not in decay_parameters and p.requires_grad)
|
595 |
-
],
|
596 |
-
"weight_decay": 0.0,
|
597 |
-
},
|
598 |
-
]
|
599 |
-
|
600 |
-
optimizer = bnb.optim.Adam8bit(
|
601 |
-
optimizer_grouped_parameters,
|
602 |
-
betas=(training_args.adam_beta1, training_args.adam_beta2),
|
603 |
-
eps=training_args.adam_epsilon,
|
604 |
-
lr=training_args.learning_rate,
|
605 |
-
)
|
606 |
-
|
607 |
-
if cfg.lr_scheduler == "one_cycle":
|
608 |
-
lr_scheduler_kwargs = (
|
609 |
-
cfg.lr_scheduler_kwargs if cfg.lr_scheduler_kwargs else {}
|
610 |
-
)
|
611 |
-
lr_scheduler = OneCycleLR(
|
612 |
-
optimizer,
|
613 |
-
cfg.learning_rate,
|
614 |
-
total_steps=total_num_steps,
|
615 |
-
epochs=cfg.num_epochs,
|
616 |
-
div_factor=cfg.lr_div_factor if cfg.lr_div_factor else 6,
|
617 |
-
**lr_scheduler_kwargs,
|
618 |
-
)
|
619 |
-
elif cfg.lr_scheduler == "log_sweep":
|
620 |
-
lr_scheduler = InterpolatingLogScheduler(
|
621 |
-
optimizer,
|
622 |
-
cfg.warmup_steps,
|
623 |
-
cfg.log_sweep_min_lr if cfg.log_sweep_min_lr else 1e-10,
|
624 |
-
cfg.log_sweep_max_lr if cfg.log_sweep_max_lr else 10,
|
625 |
-
)
|
626 |
-
else:
|
627 |
-
lr_scheduler = transformers.get_cosine_schedule_with_warmup(
|
628 |
-
optimizer,
|
629 |
-
training_args.warmup_steps,
|
630 |
-
total_num_steps,
|
631 |
-
)
|
632 |
-
trainer_kwargs["optimizers"] = (optimizer, lr_scheduler)
|
633 |
|
634 |
callbacks = []
|
635 |
callbacks.append(GPUStatsCallback(cfg))
|
|
|
10 |
from pathlib import Path
|
11 |
from typing import Optional, Union
|
12 |
|
|
|
13 |
import numpy as np
|
14 |
import torch.cuda
|
|
|
15 |
from datasets import Dataset, set_caching_enabled
|
|
|
16 |
from torch.optim.lr_scheduler import OneCycleLR
|
17 |
from torch.utils.data import DataLoader, DistributedSampler, RandomSampler
|
18 |
from transformers import EarlyStoppingCallback, Trainer, TrainingArguments
|
19 |
+
from transformers.trainer_pt_utils import SequentialDistributedSampler
|
|
|
|
|
|
|
20 |
|
21 |
from axolotl.monkeypatch.relora import ReLoRACallback, ReLoRAScheduler
|
22 |
from axolotl.utils.callbacks import (
|
|
|
26 |
)
|
27 |
from axolotl.utils.collators import DataCollatorForSeq2Seq
|
28 |
from axolotl.utils.dataloader import MultipackDistributedDataloader
|
29 |
+
from axolotl.utils.schedulers import get_cosine_schedule_with_quadratic_warmup
|
|
|
|
|
|
|
30 |
|
31 |
LOG = logging.getLogger("axolotl")
|
32 |
|
|
|
561 |
if Path(cfg.torchdistx_path).exists():
|
562 |
sys.path.append(cfg.torchdistx_path)
|
563 |
importlib.import_module("torchdistx")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
564 |
|
565 |
callbacks = []
|
566 |
callbacks.append(GPUStatsCallback(cfg))
|