Reorganize Docs (#1468)
Browse files- README.md +5 -626
- _quarto.yml +3 -3
- docs/config.qmd +439 -11
- docs/dataset-formats/conversation.qmd +71 -0
- docs/dataset-formats/index.qmd +14 -0
- docs/dataset-formats/inst_tune.qmd +165 -0
- docs/dataset-formats/pretraining.qmd +26 -0
- docs/dataset-formats/template_free.qmd +7 -0
- docs/dataset-formats/tokenized.qmd +12 -0
- docs/fsdp_qlora.qmd +1 -1
- docs/input_output.qmd +6 -4
README.md
CHANGED
@@ -35,13 +35,12 @@ Features:
|
|
35 |
- [Google Colab](#google-colab)
|
36 |
- [Launching on public clouds via SkyPilot](#launching-on-public-clouds-via-skypilot)
|
37 |
- [Dataset](#dataset)
|
38 |
-
- [How to Add Custom Prompts](#how-to-add-custom-prompts)
|
39 |
-
- [How to Use Custom Pretokenized Dataset](#how-to-use-your-custom-pretokenized-dataset)
|
40 |
- [Config](#config)
|
41 |
- [Train](#train)
|
42 |
- [Inference](#inference-playground)
|
43 |
- [Merge LORA to Base](#merge-lora-to-base)
|
44 |
- [Special Tokens](#special-tokens)
|
|
|
45 |
- Advanced Topics
|
46 |
- [Multipack](./docs/multipack.qmd)<svg width="24" height="24" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg"><path d="M17 13.5v6H5v-12h6m3-3h6v6m0-6-9 9" class="icon_svg-stroke" stroke="#666" stroke-width="1.5" fill="none" fill-rule="evenodd" stroke-linecap="round" stroke-linejoin="round"></path></svg>
|
47 |
- [RLHF & DPO](./docs/rlhf.qmd)<svg width="24" height="24" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg"><path d="M17 13.5v6H5v-12h6m3-3h6v6m0-6-9 9" class="icon_svg-stroke" stroke="#666" stroke-width="1.5" fill="none" fill-rule="evenodd" stroke-linecap="round" stroke-linejoin="round"></path></svg>
|
@@ -299,186 +298,9 @@ HF_TOKEN=xx BUCKET=<unique-name> sky spot launch axolotl-spot.yaml --env HF_TOKE
|
|
299 |
|
300 |
### Dataset
|
301 |
|
302 |
-
Axolotl supports a variety of dataset formats.
|
303 |
-
Have dataset(s) in one of the following format (JSONL recommended):
|
304 |
|
305 |
-
|
306 |
-
|
307 |
-
- `completion`: raw corpus
|
308 |
-
```json
|
309 |
-
{"text": "..."}
|
310 |
-
```
|
311 |
-
|
312 |
-
Note: Axolotl usually loads the entire dataset into memory. This will be challenging for large datasets. Use the following config to enable streaming:
|
313 |
-
|
314 |
-
```yaml
|
315 |
-
pretraining_dataset: # hf path only
|
316 |
-
```
|
317 |
-
|
318 |
-
#### Supervised finetuning
|
319 |
-
|
320 |
-
##### Instruction
|
321 |
-
|
322 |
-
- `alpaca`: instruction; input(optional)
|
323 |
-
```json
|
324 |
-
{"instruction": "...", "input": "...", "output": "..."}
|
325 |
-
```
|
326 |
-
|
327 |
-
<details>
|
328 |
-
|
329 |
-
<summary>See other formats</summary>
|
330 |
-
|
331 |
-
- `jeopardy`: question and answer
|
332 |
-
```json
|
333 |
-
{"question": "...", "category": "...", "answer": "..."}
|
334 |
-
```
|
335 |
-
- `oasst`: instruction
|
336 |
-
```json
|
337 |
-
{"INSTRUCTION": "...", "RESPONSE": "..."}
|
338 |
-
```
|
339 |
-
- `gpteacher`: instruction; input(optional)
|
340 |
-
```json
|
341 |
-
{"instruction": "...", "input": "...", "response": "..."}
|
342 |
-
```
|
343 |
-
- `reflection`: instruction with reflect; input(optional)
|
344 |
-
```json
|
345 |
-
{"instruction": "...", "input": "...", "output": "...", "reflection": "...", "corrected": "..."}
|
346 |
-
```
|
347 |
-
- `explainchoice`: question, choices, (solution OR explanation)
|
348 |
-
```json
|
349 |
-
{"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."}
|
350 |
-
```
|
351 |
-
- `concisechoice`: question, choices, (solution OR explanation)
|
352 |
-
```json
|
353 |
-
{"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."}
|
354 |
-
```
|
355 |
-
- `summarizetldr`: article and summary
|
356 |
-
```json
|
357 |
-
{"article": "...", "summary": "..."}
|
358 |
-
```
|
359 |
-
- `alpaca_chat`: basic instruct for alpaca chat
|
360 |
-
```json
|
361 |
-
{"instruction": "...", "input": "...", "response": "..."}
|
362 |
-
```
|
363 |
-
- `alpaca_chat.load_qa`: question and answer for alpaca chat
|
364 |
-
```json
|
365 |
-
{"question": "...", "answer": "..."}
|
366 |
-
```
|
367 |
-
- `alpaca_chat.load_concise`: question and answer for alpaca chat, for concise answers
|
368 |
-
```json
|
369 |
-
{"instruction": "...", "input": "...", "response": "..."}
|
370 |
-
```
|
371 |
-
- `alpaca_chat.load_camel_ai`: question and answer for alpaca chat, for load_camel_ai
|
372 |
-
```json
|
373 |
-
{"message_1": "...", "message_2": "..."}
|
374 |
-
```
|
375 |
-
- `alpaca_w_system.load_open_orca`: support for open orca datasets with included system prompts, instruct
|
376 |
-
```json
|
377 |
-
{"system_prompt": "...", "question": "...", "response": "..."}
|
378 |
-
```
|
379 |
-
- `context_qa`: in context question answering from an article
|
380 |
-
```json
|
381 |
-
{"article": "...", "question": "...", "answer": "..."}
|
382 |
-
```
|
383 |
-
- `context_qa.load_v2`: in context question answering (alternate)
|
384 |
-
```json
|
385 |
-
{"context": "...", "question": "...", "answer": "..."}
|
386 |
-
```
|
387 |
-
- `context_qa.load_404`: in context question answering from an article, with default response for no answer from context
|
388 |
-
```json
|
389 |
-
{"article": "...", "unanswerable_question": "..."}
|
390 |
-
```
|
391 |
-
- `creative_acr.load_answer`: instruction and revision
|
392 |
-
```json
|
393 |
-
{"instruction": "...", "revision": "..."}
|
394 |
-
```
|
395 |
-
- `creative_acr.load_critique`: critique
|
396 |
-
```json
|
397 |
-
{"scores": "...", "critiques": "...", "instruction": "...", "answer": "..."}
|
398 |
-
```
|
399 |
-
- `creative_acr.load_revise`: critique and revise
|
400 |
-
```json
|
401 |
-
{"scores": "...", "critiques": "...", "instruction": "...", "answer": "...", "revision": "..."}
|
402 |
-
```
|
403 |
-
- `metharme`: instruction, adds additional eos tokens
|
404 |
-
```json
|
405 |
-
{"prompt": "...", "generation": "..."}
|
406 |
-
```
|
407 |
-
|
408 |
-
</details>
|
409 |
-
|
410 |
-
##### Template-Free
|
411 |
-
|
412 |
-
- `input_output`: template-free prompt construction
|
413 |
-
```json
|
414 |
-
{"segments": [{"label": true|false, "text": "..."}]}
|
415 |
-
```
|
416 |
-
|
417 |
-
This is a special format that allows you to construct prompts without using templates. This is for advanced users who want more freedom with prompt construction. See [these docs](docs/input_output.qmd) for more details.
|
418 |
-
|
419 |
-
##### Conversation
|
420 |
-
|
421 |
-
- `sharegpt`: conversations where `from` is `human`/`gpt`. (optional: first row with role `system` to override default system prompt)
|
422 |
-
```json
|
423 |
-
{"conversations": [{"from": "...", "value": "..."}]}
|
424 |
-
```
|
425 |
-
|
426 |
-
<details>
|
427 |
-
|
428 |
-
<summary>See other formats</summary>
|
429 |
-
|
430 |
-
- `pygmalion`: pygmalion
|
431 |
-
```json
|
432 |
-
{"conversations": [{"role": "...", "value": "..."}]}
|
433 |
-
```
|
434 |
-
- `sharegpt.load_role`: conversations where `role` is used instead of `from`
|
435 |
-
```json
|
436 |
-
{"conversations": [{"role": "...", "value": "..."}]}
|
437 |
-
```
|
438 |
-
- `sharegpt.load_guanaco`: conversations where `from` is `prompter`/`assistant` instead of default sharegpt
|
439 |
-
```json
|
440 |
-
{"conversations": [{"from": "...", "value": "..."}]}
|
441 |
-
```
|
442 |
-
- `sharegpt_jokes`: creates a chat where bot is asked to tell a joke, then explain why the joke is funny
|
443 |
-
```json
|
444 |
-
{"conversations": [{"title": "...", "text": "...", "explanation": "..."}]}
|
445 |
-
```
|
446 |
-
|
447 |
-
</details>
|
448 |
-
|
449 |
-
Note: `type: sharegpt` opens a special config `conversation:` that enables conversions to many Conversation types. See dataset section under [all yaml options](#all-yaml-options).
|
450 |
-
|
451 |
-
#### How to add custom prompts
|
452 |
-
|
453 |
-
For a dataset that is preprocessed for instruction purposes:
|
454 |
-
|
455 |
-
```json
|
456 |
-
{"input": "...", "output": "..."}
|
457 |
-
```
|
458 |
-
|
459 |
-
You can use this example in your YAML config:
|
460 |
-
|
461 |
-
```yaml
|
462 |
-
datasets:
|
463 |
-
- path: repo
|
464 |
-
type:
|
465 |
-
system_prompt: ""
|
466 |
-
field_system: system
|
467 |
-
field_instruction: input
|
468 |
-
field_output: output
|
469 |
-
format: "[INST] {instruction} [/INST]"
|
470 |
-
no_input_format: "[INST] {instruction} [/INST]"
|
471 |
-
```
|
472 |
-
See full config options under [all yaml options](#all-yaml-options).
|
473 |
-
|
474 |
-
#### How to use your custom pretokenized dataset
|
475 |
-
|
476 |
-
- Do not pass a `type:`
|
477 |
-
- Columns in Dataset must be exactly `input_ids`, `attention_mask`, `labels`
|
478 |
-
|
479 |
-
```yaml
|
480 |
-
- path: ...
|
481 |
-
```
|
482 |
|
483 |
### Config
|
484 |
|
@@ -563,452 +385,9 @@ See [examples](examples) for quick start. It is recommended to duplicate and mod
|
|
563 |
- v_proj
|
564 |
```
|
565 |
|
566 |
-
|
567 |
|
568 |
-
|
569 |
-
|
570 |
-
```yaml
|
571 |
-
# This is the huggingface model that contains *.pt, *.safetensors, or *.bin files
|
572 |
-
# This can also be a relative path to a model on disk
|
573 |
-
base_model: ./llama-7b-hf
|
574 |
-
# You can specify an ignore pattern if the model repo contains more than 1 model type (*.pt, etc)
|
575 |
-
base_model_ignore_patterns:
|
576 |
-
# If the base_model repo on hf hub doesn't include configuration .json files,
|
577 |
-
# You can set that here, or leave this empty to default to base_model
|
578 |
-
base_model_config: ./llama-7b-hf
|
579 |
-
# You can specify to choose a specific model revision from huggingface hub
|
580 |
-
revision_of_model:
|
581 |
-
# Optional tokenizer configuration path in case you want to use a different tokenizer
|
582 |
-
# than the one defined in the base model
|
583 |
-
tokenizer_config:
|
584 |
-
# If you want to specify the type of model to load, AutoModelForCausalLM is a good choice too
|
585 |
-
model_type: AutoModelForCausalLM
|
586 |
-
# Corresponding tokenizer for the model AutoTokenizer is a good choice
|
587 |
-
tokenizer_type: AutoTokenizer
|
588 |
-
# Trust remote code for untrusted source
|
589 |
-
trust_remote_code:
|
590 |
-
# use_fast option for tokenizer loading from_pretrained, default to True
|
591 |
-
tokenizer_use_fast:
|
592 |
-
# Whether to use the legacy tokenizer setting, defaults to True
|
593 |
-
tokenizer_legacy:
|
594 |
-
# Resize the model embeddings when new tokens are added to multiples of 32
|
595 |
-
# This is reported to improve training speed on some models
|
596 |
-
resize_token_embeddings_to_32x:
|
597 |
-
|
598 |
-
# (Internal use only)
|
599 |
-
# Used to identify which the model is based on
|
600 |
-
is_falcon_derived_model:
|
601 |
-
is_llama_derived_model:
|
602 |
-
is_qwen_derived_model:
|
603 |
-
# Please note that if you set this to true, `padding_side` will be set to "left" by default
|
604 |
-
is_mistral_derived_model:
|
605 |
-
|
606 |
-
# optional overrides to the base model configuration
|
607 |
-
overrides_of_model_config:
|
608 |
-
# RoPE Scaling https://github.com/huggingface/transformers/pull/24653
|
609 |
-
rope_scaling:
|
610 |
-
type: # linear | dynamic
|
611 |
-
factor: # float
|
612 |
-
|
613 |
-
# optional overrides to the bnb 4bit quantization configuration
|
614 |
-
# https://huggingface.co/docs/transformers/main/main_classes/quantization#transformers.BitsAndBytesConfig
|
615 |
-
bnb_config_kwargs:
|
616 |
-
# These are default values
|
617 |
-
llm_int8_has_fp16_weight: false
|
618 |
-
bnb_4bit_quant_type: nf4
|
619 |
-
bnb_4bit_use_double_quant: true
|
620 |
-
|
621 |
-
|
622 |
-
# Whether you are training a 4-bit GPTQ quantized model
|
623 |
-
gptq: true
|
624 |
-
|
625 |
-
# This will attempt to quantize the model down to 8 bits and use adam 8 bit optimizer
|
626 |
-
load_in_8bit: true
|
627 |
-
# Use bitsandbytes 4 bit
|
628 |
-
load_in_4bit:
|
629 |
-
|
630 |
-
# Use CUDA bf16
|
631 |
-
bf16: true # bool or 'full' for `bf16_full_eval`. require >=ampere
|
632 |
-
# Use CUDA fp16
|
633 |
-
fp16: true
|
634 |
-
# Use CUDA tf32
|
635 |
-
tf32: true # require >=ampere
|
636 |
-
|
637 |
-
# No AMP (automatic mixed precision)
|
638 |
-
bfloat16: true # require >=ampere
|
639 |
-
float16: true
|
640 |
-
|
641 |
-
# Limit the memory for all available GPUs to this amount (if an integer, expressed in gigabytes); default: unset
|
642 |
-
gpu_memory_limit: 20GiB
|
643 |
-
# Do the LoRA/PEFT loading on CPU -- this is required if the base model is so large it takes up most or all of the available GPU VRAM, e.g. during a model and LoRA merge
|
644 |
-
lora_on_cpu: true
|
645 |
-
|
646 |
-
# A list of one or more datasets to finetune the model with
|
647 |
-
datasets:
|
648 |
-
# HuggingFace dataset repo | s3://,gs:// path | "json" for local dataset, make sure to fill data_files
|
649 |
-
- path: vicgalle/alpaca-gpt4
|
650 |
-
# The type of prompt to use for training. [alpaca, sharegpt, gpteacher, oasst, reflection]
|
651 |
-
type: alpaca # format | format:<prompt_style> (chat/instruct) | <prompt_strategies>.load_<load_fn>
|
652 |
-
ds_type: # Optional[str] (json|arrow|parquet|text|csv) defines the datatype when path is a file
|
653 |
-
data_files: # Optional[str] path to source data files
|
654 |
-
shards: # Optional[int] number of shards to split data into
|
655 |
-
name: # Optional[str] name of dataset configuration to load
|
656 |
-
train_on_split: train # Optional[str] name of dataset split to load from
|
657 |
-
|
658 |
-
# Optional[str] fastchat conversation type, only used with type: sharegpt
|
659 |
-
conversation: # Options (see Conversation 'name'): https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
|
660 |
-
field_human: # Optional[str]. Human key to use for conversation.
|
661 |
-
field_model: # Optional[str]. Assistant key to use for conversation.
|
662 |
-
# Add additional keys from your dataset as input or output roles
|
663 |
-
roles:
|
664 |
-
input: # Optional[List[str]]. These will be masked based on train_on_input
|
665 |
-
output: # Optional[List[str]].
|
666 |
-
|
667 |
-
# Custom user instruction prompt
|
668 |
-
- path: repo
|
669 |
-
type:
|
670 |
-
# The below are defaults. only set what's needed if you use a different column name.
|
671 |
-
system_prompt: ""
|
672 |
-
system_format: "{system}"
|
673 |
-
field_system: system
|
674 |
-
field_instruction: instruction
|
675 |
-
field_input: input
|
676 |
-
field_output: output
|
677 |
-
|
678 |
-
# Customizable to be single line or multi-line
|
679 |
-
# Use {instruction}/{input} as key to be replaced
|
680 |
-
# 'format' can include {input}
|
681 |
-
format: |-
|
682 |
-
User: {instruction} {input}
|
683 |
-
Assistant:
|
684 |
-
# 'no_input_format' cannot include {input}
|
685 |
-
no_input_format: "{instruction} "
|
686 |
-
|
687 |
-
# For `completion` datsets only, uses the provided field instead of `text` column
|
688 |
-
field:
|
689 |
-
|
690 |
-
# If false, the datasets will not be shuffled and will keep their original order in `datasets`.
|
691 |
-
# The same applies to the `test_datasets` option and the `pretraining_dataset` option. Default is true.
|
692 |
-
shuffle_merged_datasets: true
|
693 |
-
|
694 |
-
# A list of one or more datasets to eval the model with.
|
695 |
-
# You can use either test_datasets, or val_set_size, but not both.
|
696 |
-
test_datasets:
|
697 |
-
- path: /workspace/data/eval.jsonl
|
698 |
-
ds_type: json
|
699 |
-
# You need to specify a split. For "json" datasets the default split is called "train".
|
700 |
-
split: train
|
701 |
-
type: completion
|
702 |
-
data_files:
|
703 |
-
- /workspace/data/eval.jsonl
|
704 |
-
|
705 |
-
# use RL training: 'dpo', 'ipo', 'kto_pair'
|
706 |
-
rl:
|
707 |
-
|
708 |
-
# Saves the desired chat template to the tokenizer_config.json for easier inferencing
|
709 |
-
# Currently supports chatml and inst (mistral/mixtral)
|
710 |
-
chat_template: chatml
|
711 |
-
# Changes the default system message
|
712 |
-
default_system_message: You are a helpful assistant. Please give a long and detailed answer. # Currently only supports chatml.
|
713 |
-
# Axolotl attempts to save the dataset as an arrow after packing the data together so
|
714 |
-
# subsequent training attempts load faster, relative path
|
715 |
-
dataset_prepared_path: data/last_run_prepared
|
716 |
-
# Push prepared dataset to hub
|
717 |
-
push_dataset_to_hub: # repo path
|
718 |
-
# The maximum number of processes to use while preprocessing your input dataset. This defaults to `os.cpu_count()`
|
719 |
-
# if not set.
|
720 |
-
dataset_processes: # defaults to os.cpu_count() if not set
|
721 |
-
# Keep dataset in memory while preprocessing
|
722 |
-
# Only needed if cached dataset is taking too much storage
|
723 |
-
dataset_keep_in_memory:
|
724 |
-
# push checkpoints to hub
|
725 |
-
hub_model_id: # private repo path to push finetuned model
|
726 |
-
# how to push checkpoints to hub
|
727 |
-
# https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.hub_strategy
|
728 |
-
hub_strategy:
|
729 |
-
# Whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets
|
730 |
-
# Required to be true when used in combination with `push_dataset_to_hub`
|
731 |
-
hf_use_auth_token: # boolean
|
732 |
-
# How much of the dataset to set aside as evaluation. 1 = 100%, 0.50 = 50%, etc. 0 for no eval.
|
733 |
-
val_set_size: 0.04
|
734 |
-
# Num shards for whole dataset
|
735 |
-
dataset_shard_num:
|
736 |
-
# Index of shard to use for whole dataset
|
737 |
-
dataset_shard_idx:
|
738 |
-
|
739 |
-
# The maximum length of an input to train with, this should typically be less than 2048
|
740 |
-
# as most models have a token/context limit of 2048
|
741 |
-
sequence_len: 2048
|
742 |
-
# Pad inputs so each step uses constant sized buffers
|
743 |
-
# This will reduce memory fragmentation and may prevent OOMs, by re-using memory more efficiently
|
744 |
-
pad_to_sequence_len:
|
745 |
-
# Use efficient multi-packing with block diagonal attention and per sequence position_ids. Recommend set to 'true'
|
746 |
-
sample_packing:
|
747 |
-
# Set to 'false' if getting errors during eval with sample_packing on.
|
748 |
-
eval_sample_packing:
|
749 |
-
# You can set these packing optimizations AFTER starting a training at least once.
|
750 |
-
# The trainer will provide recommended values for these values.
|
751 |
-
sample_packing_eff_est:
|
752 |
-
total_num_tokens:
|
753 |
-
|
754 |
-
# Passed through to transformers when loading the model when launched without accelerate
|
755 |
-
# Use `sequential` when training w/ model parallelism to limit memory
|
756 |
-
device_map:
|
757 |
-
# Defines the max memory usage per gpu on the system. Passed through to transformers when loading the model.
|
758 |
-
max_memory:
|
759 |
-
|
760 |
-
# If you want to use 'lora' or 'qlora' or leave blank to train all parameters in original model
|
761 |
-
adapter: lora
|
762 |
-
# If you already have a lora model trained that you want to load, put that here.
|
763 |
-
# This means after training, if you want to test the model, you should set this to the value of `output_dir`.
|
764 |
-
# Note that if you merge an adapter to the base model, a new subdirectory `merged` will be created under the `output_dir`.
|
765 |
-
lora_model_dir:
|
766 |
-
|
767 |
-
# LoRA hyperparameters
|
768 |
-
# For more details about the following options, see:
|
769 |
-
# https://www.anyscale.com/blog/fine-tuning-llms-lora-or-full-parameter-an-in-depth-analysis-with-llama-2
|
770 |
-
lora_r: 8
|
771 |
-
lora_alpha: 16
|
772 |
-
lora_dropout: 0.05
|
773 |
-
lora_target_modules:
|
774 |
-
- q_proj
|
775 |
-
- v_proj
|
776 |
-
# - k_proj
|
777 |
-
# - o_proj
|
778 |
-
# - gate_proj
|
779 |
-
# - down_proj
|
780 |
-
# - up_proj
|
781 |
-
lora_target_linear: # If true, will target all linear modules
|
782 |
-
peft_layers_to_transform: # The layer indices to transform, otherwise, apply to all layers
|
783 |
-
|
784 |
-
# If you added new tokens to the tokenizer, you may need to save some LoRA modules because they need to know the new tokens.
|
785 |
-
# For LLaMA and Mistral, you need to save `embed_tokens` and `lm_head`. It may vary for other models.
|
786 |
-
# `embed_tokens` converts tokens to embeddings, and `lm_head` converts embeddings to token probabilities.
|
787 |
-
# https://github.com/huggingface/peft/issues/334#issuecomment-1561727994
|
788 |
-
lora_modules_to_save:
|
789 |
-
# - embed_tokens
|
790 |
-
# - lm_head
|
791 |
-
|
792 |
-
lora_fan_in_fan_out: false
|
793 |
-
|
794 |
-
peft:
|
795 |
-
# Configuration options for loftq initialization for LoRA
|
796 |
-
# https://huggingface.co/docs/peft/developer_guides/quantization#loftq-initialization
|
797 |
-
loftq_config:
|
798 |
-
loftq_bits: # typically 4 bits
|
799 |
-
|
800 |
-
# ReLoRA configuration
|
801 |
-
# Must use either 'lora' or 'qlora' adapter, and does not support fsdp or deepspeed
|
802 |
-
relora_steps: # Number of steps per ReLoRA restart
|
803 |
-
relora_warmup_steps: # Number of per-restart warmup steps
|
804 |
-
relora_anneal_steps: # Number of anneal steps for each relora cycle
|
805 |
-
relora_prune_ratio: # threshold for optimizer magnitude when pruning
|
806 |
-
relora_cpu_offload: # True to perform lora weight merges on cpu during restarts, for modest gpu memory savings
|
807 |
-
|
808 |
-
# wandb configuration if you're using it
|
809 |
-
# Make sure your `WANDB_API_KEY` environment variable is set (recommended) or you login to wandb with `wandb login`.
|
810 |
-
wandb_mode: # "offline" to save run metadata locally and not sync to the server, "disabled" to turn off wandb
|
811 |
-
wandb_project: # Your wandb project name
|
812 |
-
wandb_entity: # A wandb Team name if using a Team
|
813 |
-
wandb_watch:
|
814 |
-
wandb_name: # Set the name of your wandb run
|
815 |
-
wandb_run_id: # Set the ID of your wandb run
|
816 |
-
wandb_log_model: # "checkpoint" to log model to wandb Artifacts every `save_steps` or "end" to log only at the end of training
|
817 |
-
|
818 |
-
# mlflow configuration if you're using it
|
819 |
-
mlflow_tracking_uri: # URI to mlflow
|
820 |
-
mlflow_experiment_name: # Your experiment name
|
821 |
-
hf_mlflow_log_artifacts: # set to true to copy each saved checkpoint on each save to mlflow artifact registry
|
822 |
-
|
823 |
-
# Where to save the full-finetuned model to
|
824 |
-
output_dir: ./completed-model
|
825 |
-
|
826 |
-
# Whether to use torch.compile and which backend to use
|
827 |
-
torch_compile: # bool
|
828 |
-
torch_compile_backend: # Optional[str]
|
829 |
-
|
830 |
-
# Training hyperparameters
|
831 |
-
|
832 |
-
# If greater than 1, backpropagation will be skipped and the gradients will be accumulated for the given number of steps.
|
833 |
-
gradient_accumulation_steps: 1
|
834 |
-
# The number of samples to include in each batch. This is the number of samples sent to each GPU.
|
835 |
-
micro_batch_size: 2
|
836 |
-
eval_batch_size:
|
837 |
-
num_epochs: 4
|
838 |
-
warmup_steps: 100 # cannot use with warmup_ratio
|
839 |
-
warmup_ratio: 0.05 # cannot use with warmup_steps
|
840 |
-
learning_rate: 0.00003
|
841 |
-
lr_quadratic_warmup:
|
842 |
-
logging_steps:
|
843 |
-
eval_steps: # Leave empty to eval at each epoch, integers for every N steps. decimal for fraction of total steps
|
844 |
-
evals_per_epoch: # number of times per epoch to run evals, mutually exclusive with eval_steps
|
845 |
-
save_strategy: # Set to `no` to skip checkpoint saves
|
846 |
-
save_steps: # Leave empty to save at each epoch
|
847 |
-
saves_per_epoch: # number of times per epoch to save a checkpoint, mutually exclusive with save_steps
|
848 |
-
save_total_limit: # Checkpoints saved at a time
|
849 |
-
# Maximum number of iterations to train for. It precedes num_epochs which means that
|
850 |
-
# if both are set, num_epochs will not be guaranteed.
|
851 |
-
# e.g., when 1 epoch is 1000 steps => `num_epochs: 2` and `max_steps: 100` will train for 100 steps
|
852 |
-
max_steps:
|
853 |
-
|
854 |
-
eval_table_size: # Approximate number of predictions sent to wandb depending on batch size. Enabled above 0. Default is 0
|
855 |
-
eval_max_new_tokens: # Total number of tokens generated for predictions sent to wandb. Default is 128
|
856 |
-
eval_causal_lm_metrics: # HF evaluate metrics used during evaluation. Default is ["sacrebleu", "comet", "ter", chrf]
|
857 |
-
|
858 |
-
loss_watchdog_threshold: # High loss value, indicating the learning has broken down (a good estimate is ~2 times the loss at the start of training)
|
859 |
-
loss_watchdog_patience: # Number of high-loss steps in a row before the trainer aborts (default: 3)
|
860 |
-
|
861 |
-
# Save model as safetensors (require safetensors package)
|
862 |
-
save_safetensors:
|
863 |
-
|
864 |
-
# Whether to mask out or include the human's prompt from the training labels
|
865 |
-
train_on_inputs: false
|
866 |
-
# Group similarly sized data to minimize padding.
|
867 |
-
# May be slower to start, as it must download and sort the entire dataset.
|
868 |
-
# Note that training loss may have an oscillating pattern with this enabled.
|
869 |
-
group_by_length: false
|
870 |
-
|
871 |
-
# Whether to use gradient checkpointing https://huggingface.co/docs/transformers/v4.18.0/en/performance#gradient-checkpointing
|
872 |
-
gradient_checkpointing: false
|
873 |
-
# additional kwargs to pass to the trainer for gradient checkpointing
|
874 |
-
# gradient_checkpointing_kwargs:
|
875 |
-
# use_reentrant: true
|
876 |
-
|
877 |
-
# Stop training after this many evaluation losses have increased in a row
|
878 |
-
# https://huggingface.co/transformers/v4.2.2/_modules/transformers/trainer_callback.html#EarlyStoppingCallback
|
879 |
-
early_stopping_patience: 3
|
880 |
-
|
881 |
-
# Specify a scheduler and kwargs to use with the optimizer
|
882 |
-
lr_scheduler: # 'one_cycle' | 'log_sweep' | empty for cosine
|
883 |
-
lr_scheduler_kwargs:
|
884 |
-
cosine_min_lr_ratio: # decay lr to some percentage of the peak lr, e.g. cosine_min_lr_ratio=0.1 for 10% of peak lr
|
885 |
-
cosine_constant_lr_ratio: # freeze lr at some percentage of the step, e.g. cosine_constant_lr_ratio=0.8 means start cosine_min_lr at 80% of training step (https://arxiv.org/pdf/2308.04014.pdf)
|
886 |
-
|
887 |
-
# For one_cycle optim
|
888 |
-
lr_div_factor: # Learning rate div factor
|
889 |
-
|
890 |
-
# Specify optimizer
|
891 |
-
# Valid values are driven by the Transformers OptimizerNames class, see:
|
892 |
-
# https://github.com/huggingface/transformers/blob/95b374952dc27d8511541d6f5a4e22c9ec11fb24/src/transformers/training_args.py#L134
|
893 |
-
#
|
894 |
-
# Note that not all optimizers may be available in your environment, ex: 'adamw_anyprecision' is part of
|
895 |
-
# torchdistx, 'adamw_bnb_8bit' is part of bnb.optim.Adam8bit, etc. When in doubt, it is recommended to start with the optimizer used
|
896 |
-
# in the examples/ for your model and fine-tuning use case.
|
897 |
-
#
|
898 |
-
# Valid values for 'optimizer' include:
|
899 |
-
# - adamw_hf
|
900 |
-
# - adamw_torch
|
901 |
-
# - adamw_torch_fused
|
902 |
-
# - adamw_torch_xla
|
903 |
-
# - adamw_apex_fused
|
904 |
-
# - adafactor
|
905 |
-
# - adamw_anyprecision
|
906 |
-
# - sgd
|
907 |
-
# - adagrad
|
908 |
-
# - adamw_bnb_8bit
|
909 |
-
# - lion_8bit
|
910 |
-
# - lion_32bit
|
911 |
-
# - paged_adamw_32bit
|
912 |
-
# - paged_adamw_8bit
|
913 |
-
# - paged_lion_32bit
|
914 |
-
# - paged_lion_8bit
|
915 |
-
# - galore_adamw
|
916 |
-
# - galore_adamw_8bit
|
917 |
-
# - galore_adafactor
|
918 |
-
# - galore_adamw_layerwise
|
919 |
-
# - galore_adamw_8bit_layerwise
|
920 |
-
# - galore_adafactor_layerwise
|
921 |
-
optimizer:
|
922 |
-
# Dictionary of arguments to pass to the optimizer
|
923 |
-
optim_args:
|
924 |
-
# For Galore Optimizers the following optim_args are available
|
925 |
-
# rank: # type: int
|
926 |
-
# update_proj_gap # type: int
|
927 |
-
# scale # type: float
|
928 |
-
# proj_type: # type: str, default = std
|
929 |
-
|
930 |
-
# The target modules to optimize, i.e. the module names that you would like to train, right now this is used only for GaLore algorithm
|
931 |
-
optim_target_modules:
|
932 |
-
# - self_attn # for llama
|
933 |
-
# - mlp
|
934 |
-
|
935 |
-
# Specify weight decay
|
936 |
-
weight_decay:
|
937 |
-
# adamw hyperparams
|
938 |
-
adam_beta1:
|
939 |
-
adam_beta2:
|
940 |
-
adam_epsilon:
|
941 |
-
# Gradient clipping max norm
|
942 |
-
max_grad_norm:
|
943 |
-
|
944 |
-
# Augmentation techniques
|
945 |
-
# NEFT https://arxiv.org/abs/2310.05914, set this to a number (paper default is 5) to add noise to embeddings
|
946 |
-
# currently only supported on Llama and Mistral
|
947 |
-
neftune_noise_alpha:
|
948 |
-
|
949 |
-
# Whether to bettertransformers
|
950 |
-
flash_optimum:
|
951 |
-
# Whether to use xformers attention patch https://github.com/facebookresearch/xformers:
|
952 |
-
xformers_attention:
|
953 |
-
# Whether to use flash attention patch https://github.com/Dao-AILab/flash-attention:
|
954 |
-
flash_attention:
|
955 |
-
flash_attn_cross_entropy: # Whether to use flash-attention cross entropy implementation - advanced use only
|
956 |
-
flash_attn_rms_norm: # Whether to use flash-attention rms norm implementation - advanced use only
|
957 |
-
flash_attn_fuse_qkv: # Whether to fuse QKV into a single operation
|
958 |
-
flash_attn_fuse_mlp: # Whether to fuse part of the MLP into a single operation
|
959 |
-
# Whether to use scaled-dot-product attention
|
960 |
-
# https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
|
961 |
-
sdp_attention:
|
962 |
-
# Shifted-sparse attention (only llama) - https://arxiv.org/pdf/2309.12307.pdf
|
963 |
-
s2_attention:
|
964 |
-
# Resume from a specific checkpoint dir
|
965 |
-
resume_from_checkpoint:
|
966 |
-
# If resume_from_checkpoint isn't set and you simply want it to start where it left off.
|
967 |
-
# Be careful with this being turned on between different models.
|
968 |
-
auto_resume_from_checkpoints: false
|
969 |
-
|
970 |
-
# Don't mess with this, it's here for accelerate and torchrun
|
971 |
-
local_rank:
|
972 |
-
|
973 |
-
# Add or change special tokens.
|
974 |
-
# If you add tokens here, you don't need to add them to the `tokens` list.
|
975 |
-
special_tokens:
|
976 |
-
# bos_token: "<s>"
|
977 |
-
# eos_token: "</s>"
|
978 |
-
# unk_token: "<unk>"
|
979 |
-
|
980 |
-
# Add extra tokens.
|
981 |
-
tokens:
|
982 |
-
|
983 |
-
# FSDP
|
984 |
-
fsdp:
|
985 |
-
fsdp_config:
|
986 |
-
|
987 |
-
# Deepspeed config path. e.g., deepspeed_configs/zero3.json
|
988 |
-
deepspeed:
|
989 |
-
|
990 |
-
# Advanced DDP Arguments
|
991 |
-
ddp_timeout:
|
992 |
-
ddp_bucket_cap_mb:
|
993 |
-
ddp_broadcast_buffers:
|
994 |
-
|
995 |
-
# Path to torch distx for optim 'adamw_anyprecision'
|
996 |
-
torchdistx_path:
|
997 |
-
|
998 |
-
# Set to HF dataset for type: 'completion' for streaming instead of pre-tokenize
|
999 |
-
pretraining_dataset:
|
1000 |
-
|
1001 |
-
# Debug mode
|
1002 |
-
debug:
|
1003 |
-
|
1004 |
-
# Seed
|
1005 |
-
seed:
|
1006 |
-
|
1007 |
-
# Allow overwrite yml config using from cli
|
1008 |
-
strict:
|
1009 |
-
```
|
1010 |
-
|
1011 |
-
</details>
|
1012 |
|
1013 |
<details>
|
1014 |
<summary> Understanding of batch size and gradient accumulation steps </summary>
|
|
|
35 |
- [Google Colab](#google-colab)
|
36 |
- [Launching on public clouds via SkyPilot](#launching-on-public-clouds-via-skypilot)
|
37 |
- [Dataset](#dataset)
|
|
|
|
|
38 |
- [Config](#config)
|
39 |
- [Train](#train)
|
40 |
- [Inference](#inference-playground)
|
41 |
- [Merge LORA to Base](#merge-lora-to-base)
|
42 |
- [Special Tokens](#special-tokens)
|
43 |
+
- [All Config Options](#all-config-options)
|
44 |
- Advanced Topics
|
45 |
- [Multipack](./docs/multipack.qmd)<svg width="24" height="24" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg"><path d="M17 13.5v6H5v-12h6m3-3h6v6m0-6-9 9" class="icon_svg-stroke" stroke="#666" stroke-width="1.5" fill="none" fill-rule="evenodd" stroke-linecap="round" stroke-linejoin="round"></path></svg>
|
46 |
- [RLHF & DPO](./docs/rlhf.qmd)<svg width="24" height="24" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg"><path d="M17 13.5v6H5v-12h6m3-3h6v6m0-6-9 9" class="icon_svg-stroke" stroke="#666" stroke-width="1.5" fill="none" fill-rule="evenodd" stroke-linecap="round" stroke-linejoin="round"></path></svg>
|
|
|
298 |
|
299 |
### Dataset
|
300 |
|
301 |
+
Axolotl supports a variety of dataset formats. It is recommended to use a JSONL. The schema of the JSONL depends upon the task and the prompt template you wish to use. Instead of a JSONL, you can also use a HuggingFace dataset with columns for each JSONL field.
|
|
|
302 |
|
303 |
+
See [these docs](https://openaccess-ai-collective.github.io/axolotl/docs/dataset-formats/) for more information on how to use different dataset formats.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
|
305 |
### Config
|
306 |
|
|
|
385 |
- v_proj
|
386 |
```
|
387 |
|
388 |
+
#### All Config Options
|
389 |
|
390 |
+
See [these docs](docs/config.qmd) for all config options.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
|
392 |
<details>
|
393 |
<summary> Understanding of batch size and gradient accumulation steps </summary>
|
_quarto.yml
CHANGED
@@ -30,20 +30,20 @@ website:
|
|
30 |
# TODO Edit folder structure after we have more docs.
|
31 |
- docs/debugging.qmd
|
32 |
- docs/multipack.qmd
|
33 |
-
- docs/
|
34 |
- docs/input_output.qmd
|
35 |
- docs/rlhf.qmd
|
36 |
- docs/nccl.qmd
|
37 |
- docs/mac.qmd
|
38 |
- docs/multi-node.qmd
|
|
|
|
|
39 |
- section: "Reference"
|
40 |
contents:
|
41 |
- docs/config.qmd
|
42 |
- docs/faq.qmd
|
43 |
|
44 |
|
45 |
-
|
46 |
-
|
47 |
format:
|
48 |
html:
|
49 |
theme: materia
|
|
|
30 |
# TODO Edit folder structure after we have more docs.
|
31 |
- docs/debugging.qmd
|
32 |
- docs/multipack.qmd
|
33 |
+
- docs/fsdp_qlora.qmd
|
34 |
- docs/input_output.qmd
|
35 |
- docs/rlhf.qmd
|
36 |
- docs/nccl.qmd
|
37 |
- docs/mac.qmd
|
38 |
- docs/multi-node.qmd
|
39 |
+
- section: "Dataset Formats"
|
40 |
+
contents: docs/dataset-formats/*
|
41 |
- section: "Reference"
|
42 |
contents:
|
43 |
- docs/config.qmd
|
44 |
- docs/faq.qmd
|
45 |
|
46 |
|
|
|
|
|
47 |
format:
|
48 |
html:
|
49 |
theme: materia
|
docs/config.qmd
CHANGED
@@ -3,15 +3,443 @@ title: Config options
|
|
3 |
description: A complete list of all configuration options.
|
4 |
---
|
5 |
|
6 |
-
```
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
```
|
|
|
3 |
description: A complete list of all configuration options.
|
4 |
---
|
5 |
|
6 |
+
```yaml
|
7 |
+
# This is the huggingface model that contains *.pt, *.safetensors, or *.bin files
|
8 |
+
# This can also be a relative path to a model on disk
|
9 |
+
base_model: ./llama-7b-hf
|
10 |
+
# You can specify an ignore pattern if the model repo contains more than 1 model type (*.pt, etc)
|
11 |
+
base_model_ignore_patterns:
|
12 |
+
# If the base_model repo on hf hub doesn't include configuration .json files,
|
13 |
+
# You can set that here, or leave this empty to default to base_model
|
14 |
+
base_model_config: ./llama-7b-hf
|
15 |
+
# You can specify to choose a specific model revision from huggingface hub
|
16 |
+
revision_of_model:
|
17 |
+
# Optional tokenizer configuration path in case you want to use a different tokenizer
|
18 |
+
# than the one defined in the base model
|
19 |
+
tokenizer_config:
|
20 |
+
# If you want to specify the type of model to load, AutoModelForCausalLM is a good choice too
|
21 |
+
model_type: AutoModelForCausalLM
|
22 |
+
# Corresponding tokenizer for the model AutoTokenizer is a good choice
|
23 |
+
tokenizer_type: AutoTokenizer
|
24 |
+
# Trust remote code for untrusted source
|
25 |
+
trust_remote_code:
|
26 |
+
# use_fast option for tokenizer loading from_pretrained, default to True
|
27 |
+
tokenizer_use_fast:
|
28 |
+
# Whether to use the legacy tokenizer setting, defaults to True
|
29 |
+
tokenizer_legacy:
|
30 |
+
# Resize the model embeddings when new tokens are added to multiples of 32
|
31 |
+
# This is reported to improve training speed on some models
|
32 |
+
resize_token_embeddings_to_32x:
|
33 |
+
|
34 |
+
# (Internal use only)
|
35 |
+
# Used to identify which the model is based on
|
36 |
+
is_falcon_derived_model:
|
37 |
+
is_llama_derived_model:
|
38 |
+
is_qwen_derived_model:
|
39 |
+
# Please note that if you set this to true, `padding_side` will be set to "left" by default
|
40 |
+
is_mistral_derived_model:
|
41 |
+
|
42 |
+
# optional overrides to the base model configuration
|
43 |
+
overrides_of_model_config:
|
44 |
+
# RoPE Scaling https://github.com/huggingface/transformers/pull/24653
|
45 |
+
rope_scaling:
|
46 |
+
type: # linear | dynamic
|
47 |
+
factor: # float
|
48 |
+
|
49 |
+
# optional overrides to the bnb 4bit quantization configuration
|
50 |
+
# https://huggingface.co/docs/transformers/main/main_classes/quantization#transformers.BitsAndBytesConfig
|
51 |
+
bnb_config_kwargs:
|
52 |
+
# These are default values
|
53 |
+
llm_int8_has_fp16_weight: false
|
54 |
+
bnb_4bit_quant_type: nf4
|
55 |
+
bnb_4bit_use_double_quant: true
|
56 |
+
|
57 |
+
|
58 |
+
# Whether you are training a 4-bit GPTQ quantized model
|
59 |
+
gptq: true
|
60 |
+
|
61 |
+
# This will attempt to quantize the model down to 8 bits and use adam 8 bit optimizer
|
62 |
+
load_in_8bit: true
|
63 |
+
# Use bitsandbytes 4 bit
|
64 |
+
load_in_4bit:
|
65 |
+
|
66 |
+
# Use CUDA bf16
|
67 |
+
bf16: true # bool or 'full' for `bf16_full_eval`. require >=ampere
|
68 |
+
# Use CUDA fp16
|
69 |
+
fp16: true
|
70 |
+
# Use CUDA tf32
|
71 |
+
tf32: true # require >=ampere
|
72 |
+
|
73 |
+
# No AMP (automatic mixed precision)
|
74 |
+
bfloat16: true # require >=ampere
|
75 |
+
float16: true
|
76 |
+
|
77 |
+
# Limit the memory for all available GPUs to this amount (if an integer, expressed in gigabytes); default: unset
|
78 |
+
gpu_memory_limit: 20GiB
|
79 |
+
# Do the LoRA/PEFT loading on CPU -- this is required if the base model is so large it takes up most or all of the available GPU VRAM, e.g. during a model and LoRA merge
|
80 |
+
lora_on_cpu: true
|
81 |
+
|
82 |
+
# A list of one or more datasets to finetune the model with
|
83 |
+
datasets:
|
84 |
+
# HuggingFace dataset repo | s3://,gs:// path | "json" for local dataset, make sure to fill data_files
|
85 |
+
- path: vicgalle/alpaca-gpt4
|
86 |
+
# The type of prompt to use for training. [alpaca, sharegpt, gpteacher, oasst, reflection]
|
87 |
+
type: alpaca # format | format:<prompt_style> (chat/instruct) | <prompt_strategies>.load_<load_fn>
|
88 |
+
ds_type: # Optional[str] (json|arrow|parquet|text|csv) defines the datatype when path is a file
|
89 |
+
data_files: # Optional[str] path to source data files
|
90 |
+
shards: # Optional[int] number of shards to split data into
|
91 |
+
name: # Optional[str] name of dataset configuration to load
|
92 |
+
train_on_split: train # Optional[str] name of dataset split to load from
|
93 |
+
|
94 |
+
# Optional[str] fastchat conversation type, only used with type: sharegpt
|
95 |
+
conversation: # Options (see Conversation 'name'): https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
|
96 |
+
field_human: # Optional[str]. Human key to use for conversation.
|
97 |
+
field_model: # Optional[str]. Assistant key to use for conversation.
|
98 |
+
# Add additional keys from your dataset as input or output roles
|
99 |
+
roles:
|
100 |
+
input: # Optional[List[str]]. These will be masked based on train_on_input
|
101 |
+
output: # Optional[List[str]].
|
102 |
+
|
103 |
+
# Custom user instruction prompt
|
104 |
+
- path: repo
|
105 |
+
type:
|
106 |
+
# The below are defaults. only set what's needed if you use a different column name.
|
107 |
+
system_prompt: ""
|
108 |
+
system_format: "{system}"
|
109 |
+
field_system: system
|
110 |
+
field_instruction: instruction
|
111 |
+
field_input: input
|
112 |
+
field_output: output
|
113 |
+
|
114 |
+
# Customizable to be single line or multi-line
|
115 |
+
# Use {instruction}/{input} as key to be replaced
|
116 |
+
# 'format' can include {input}
|
117 |
+
format: |-
|
118 |
+
User: {instruction} {input}
|
119 |
+
Assistant:
|
120 |
+
# 'no_input_format' cannot include {input}
|
121 |
+
no_input_format: "{instruction} "
|
122 |
+
|
123 |
+
# For `completion` datsets only, uses the provided field instead of `text` column
|
124 |
+
field:
|
125 |
+
|
126 |
+
# If false, the datasets will not be shuffled and will keep their original order in `datasets`.
|
127 |
+
# The same applies to the `test_datasets` option and the `pretraining_dataset` option. Default is true.
|
128 |
+
shuffle_merged_datasets: true
|
129 |
+
|
130 |
+
# A list of one or more datasets to eval the model with.
|
131 |
+
# You can use either test_datasets, or val_set_size, but not both.
|
132 |
+
test_datasets:
|
133 |
+
- path: /workspace/data/eval.jsonl
|
134 |
+
ds_type: json
|
135 |
+
# You need to specify a split. For "json" datasets the default split is called "train".
|
136 |
+
split: train
|
137 |
+
type: completion
|
138 |
+
data_files:
|
139 |
+
- /workspace/data/eval.jsonl
|
140 |
+
|
141 |
+
# use RL training: 'dpo', 'ipo', 'kto_pair'
|
142 |
+
rl:
|
143 |
+
|
144 |
+
# Saves the desired chat template to the tokenizer_config.json for easier inferencing
|
145 |
+
# Currently supports chatml and inst (mistral/mixtral)
|
146 |
+
chat_template: chatml
|
147 |
+
# Changes the default system message
|
148 |
+
default_system_message: You are a helpful assistant. Please give a long and detailed answer. # Currently only supports chatml.
|
149 |
+
# Axolotl attempts to save the dataset as an arrow after packing the data together so
|
150 |
+
# subsequent training attempts load faster, relative path
|
151 |
+
dataset_prepared_path: data/last_run_prepared
|
152 |
+
# Push prepared dataset to hub
|
153 |
+
push_dataset_to_hub: # repo path
|
154 |
+
# The maximum number of processes to use while preprocessing your input dataset. This defaults to `os.cpu_count()`
|
155 |
+
# if not set.
|
156 |
+
dataset_processes: # defaults to os.cpu_count() if not set
|
157 |
+
# Keep dataset in memory while preprocessing
|
158 |
+
# Only needed if cached dataset is taking too much storage
|
159 |
+
dataset_keep_in_memory:
|
160 |
+
# push checkpoints to hub
|
161 |
+
hub_model_id: # private repo path to push finetuned model
|
162 |
+
# how to push checkpoints to hub
|
163 |
+
# https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.hub_strategy
|
164 |
+
hub_strategy:
|
165 |
+
# Whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets
|
166 |
+
# Required to be true when used in combination with `push_dataset_to_hub`
|
167 |
+
hf_use_auth_token: # boolean
|
168 |
+
# How much of the dataset to set aside as evaluation. 1 = 100%, 0.50 = 50%, etc. 0 for no eval.
|
169 |
+
val_set_size: 0.04
|
170 |
+
# Num shards for whole dataset
|
171 |
+
dataset_shard_num:
|
172 |
+
# Index of shard to use for whole dataset
|
173 |
+
dataset_shard_idx:
|
174 |
+
|
175 |
+
# The maximum length of an input to train with, this should typically be less than 2048
|
176 |
+
# as most models have a token/context limit of 2048
|
177 |
+
sequence_len: 2048
|
178 |
+
# Pad inputs so each step uses constant sized buffers
|
179 |
+
# This will reduce memory fragmentation and may prevent OOMs, by re-using memory more efficiently
|
180 |
+
pad_to_sequence_len:
|
181 |
+
# Use efficient multi-packing with block diagonal attention and per sequence position_ids. Recommend set to 'true'
|
182 |
+
sample_packing:
|
183 |
+
# Set to 'false' if getting errors during eval with sample_packing on.
|
184 |
+
eval_sample_packing:
|
185 |
+
# You can set these packing optimizations AFTER starting a training at least once.
|
186 |
+
# The trainer will provide recommended values for these values.
|
187 |
+
sample_packing_eff_est:
|
188 |
+
total_num_tokens:
|
189 |
+
|
190 |
+
# Passed through to transformers when loading the model when launched without accelerate
|
191 |
+
# Use `sequential` when training w/ model parallelism to limit memory
|
192 |
+
device_map:
|
193 |
+
# Defines the max memory usage per gpu on the system. Passed through to transformers when loading the model.
|
194 |
+
max_memory:
|
195 |
+
|
196 |
+
# If you want to use 'lora' or 'qlora' or leave blank to train all parameters in original model
|
197 |
+
adapter: lora
|
198 |
+
# If you already have a lora model trained that you want to load, put that here.
|
199 |
+
# This means after training, if you want to test the model, you should set this to the value of `output_dir`.
|
200 |
+
# Note that if you merge an adapter to the base model, a new subdirectory `merged` will be created under the `output_dir`.
|
201 |
+
lora_model_dir:
|
202 |
+
|
203 |
+
# LoRA hyperparameters
|
204 |
+
# For more details about the following options, see:
|
205 |
+
# https://www.anyscale.com/blog/fine-tuning-llms-lora-or-full-parameter-an-in-depth-analysis-with-llama-2
|
206 |
+
lora_r: 8
|
207 |
+
lora_alpha: 16
|
208 |
+
lora_dropout: 0.05
|
209 |
+
lora_target_modules:
|
210 |
+
- q_proj
|
211 |
+
- v_proj
|
212 |
+
# - k_proj
|
213 |
+
# - o_proj
|
214 |
+
# - gate_proj
|
215 |
+
# - down_proj
|
216 |
+
# - up_proj
|
217 |
+
lora_target_linear: # If true, will target all linear modules
|
218 |
+
peft_layers_to_transform: # The layer indices to transform, otherwise, apply to all layers
|
219 |
+
|
220 |
+
# If you added new tokens to the tokenizer, you may need to save some LoRA modules because they need to know the new tokens.
|
221 |
+
# For LLaMA and Mistral, you need to save `embed_tokens` and `lm_head`. It may vary for other models.
|
222 |
+
# `embed_tokens` converts tokens to embeddings, and `lm_head` converts embeddings to token probabilities.
|
223 |
+
# https://github.com/huggingface/peft/issues/334#issuecomment-1561727994
|
224 |
+
lora_modules_to_save:
|
225 |
+
# - embed_tokens
|
226 |
+
# - lm_head
|
227 |
+
|
228 |
+
lora_fan_in_fan_out: false
|
229 |
+
|
230 |
+
peft:
|
231 |
+
# Configuration options for loftq initialization for LoRA
|
232 |
+
# https://huggingface.co/docs/peft/developer_guides/quantization#loftq-initialization
|
233 |
+
loftq_config:
|
234 |
+
loftq_bits: # typically 4 bits
|
235 |
+
|
236 |
+
# ReLoRA configuration
|
237 |
+
# Must use either 'lora' or 'qlora' adapter, and does not support fsdp or deepspeed
|
238 |
+
relora_steps: # Number of steps per ReLoRA restart
|
239 |
+
relora_warmup_steps: # Number of per-restart warmup steps
|
240 |
+
relora_anneal_steps: # Number of anneal steps for each relora cycle
|
241 |
+
relora_prune_ratio: # threshold for optimizer magnitude when pruning
|
242 |
+
relora_cpu_offload: # True to perform lora weight merges on cpu during restarts, for modest gpu memory savings
|
243 |
+
|
244 |
+
# wandb configuration if you're using it
|
245 |
+
# Make sure your `WANDB_API_KEY` environment variable is set (recommended) or you login to wandb with `wandb login`.
|
246 |
+
wandb_mode: # "offline" to save run metadata locally and not sync to the server, "disabled" to turn off wandb
|
247 |
+
wandb_project: # Your wandb project name
|
248 |
+
wandb_entity: # A wandb Team name if using a Team
|
249 |
+
wandb_watch:
|
250 |
+
wandb_name: # Set the name of your wandb run
|
251 |
+
wandb_run_id: # Set the ID of your wandb run
|
252 |
+
wandb_log_model: # "checkpoint" to log model to wandb Artifacts every `save_steps` or "end" to log only at the end of training
|
253 |
+
|
254 |
+
# mlflow configuration if you're using it
|
255 |
+
mlflow_tracking_uri: # URI to mlflow
|
256 |
+
mlflow_experiment_name: # Your experiment name
|
257 |
+
hf_mlflow_log_artifacts: # set to true to copy each saved checkpoint on each save to mlflow artifact registry
|
258 |
+
|
259 |
+
# Where to save the full-finetuned model to
|
260 |
+
output_dir: ./completed-model
|
261 |
+
|
262 |
+
# Whether to use torch.compile and which backend to use
|
263 |
+
torch_compile: # bool
|
264 |
+
torch_compile_backend: # Optional[str]
|
265 |
+
|
266 |
+
# Training hyperparameters
|
267 |
+
|
268 |
+
# If greater than 1, backpropagation will be skipped and the gradients will be accumulated for the given number of steps.
|
269 |
+
gradient_accumulation_steps: 1
|
270 |
+
# The number of samples to include in each batch. This is the number of samples sent to each GPU.
|
271 |
+
micro_batch_size: 2
|
272 |
+
eval_batch_size:
|
273 |
+
num_epochs: 4
|
274 |
+
warmup_steps: 100 # cannot use with warmup_ratio
|
275 |
+
warmup_ratio: 0.05 # cannot use with warmup_steps
|
276 |
+
learning_rate: 0.00003
|
277 |
+
lr_quadratic_warmup:
|
278 |
+
logging_steps:
|
279 |
+
eval_steps: # Leave empty to eval at each epoch, integers for every N steps. decimal for fraction of total steps
|
280 |
+
evals_per_epoch: # number of times per epoch to run evals, mutually exclusive with eval_steps
|
281 |
+
save_strategy: # Set to `no` to skip checkpoint saves
|
282 |
+
save_steps: # Leave empty to save at each epoch
|
283 |
+
saves_per_epoch: # number of times per epoch to save a checkpoint, mutually exclusive with save_steps
|
284 |
+
save_total_limit: # Checkpoints saved at a time
|
285 |
+
# Maximum number of iterations to train for. It precedes num_epochs which means that
|
286 |
+
# if both are set, num_epochs will not be guaranteed.
|
287 |
+
# e.g., when 1 epoch is 1000 steps => `num_epochs: 2` and `max_steps: 100` will train for 100 steps
|
288 |
+
max_steps:
|
289 |
+
|
290 |
+
eval_table_size: # Approximate number of predictions sent to wandb depending on batch size. Enabled above 0. Default is 0
|
291 |
+
eval_max_new_tokens: # Total number of tokens generated for predictions sent to wandb. Default is 128
|
292 |
+
eval_causal_lm_metrics: # HF evaluate metrics used during evaluation. Default is ["sacrebleu", "comet", "ter", chrf]
|
293 |
+
|
294 |
+
loss_watchdog_threshold: # High loss value, indicating the learning has broken down (a good estimate is ~2 times the loss at the start of training)
|
295 |
+
loss_watchdog_patience: # Number of high-loss steps in a row before the trainer aborts (default: 3)
|
296 |
+
|
297 |
+
# Save model as safetensors (require safetensors package)
|
298 |
+
save_safetensors:
|
299 |
+
|
300 |
+
# Whether to mask out or include the human's prompt from the training labels
|
301 |
+
train_on_inputs: false
|
302 |
+
# Group similarly sized data to minimize padding.
|
303 |
+
# May be slower to start, as it must download and sort the entire dataset.
|
304 |
+
# Note that training loss may have an oscillating pattern with this enabled.
|
305 |
+
group_by_length: false
|
306 |
+
|
307 |
+
# Whether to use gradient checkpointing https://huggingface.co/docs/transformers/v4.18.0/en/performance#gradient-checkpointing
|
308 |
+
gradient_checkpointing: false
|
309 |
+
# additional kwargs to pass to the trainer for gradient checkpointing
|
310 |
+
# gradient_checkpointing_kwargs:
|
311 |
+
# use_reentrant: true
|
312 |
+
|
313 |
+
# Stop training after this many evaluation losses have increased in a row
|
314 |
+
# https://huggingface.co/transformers/v4.2.2/_modules/transformers/trainer_callback.html#EarlyStoppingCallback
|
315 |
+
early_stopping_patience: 3
|
316 |
+
|
317 |
+
# Specify a scheduler and kwargs to use with the optimizer
|
318 |
+
lr_scheduler: # 'one_cycle' | 'log_sweep' | empty for cosine
|
319 |
+
lr_scheduler_kwargs:
|
320 |
+
cosine_min_lr_ratio: # decay lr to some percentage of the peak lr, e.g. cosine_min_lr_ratio=0.1 for 10% of peak lr
|
321 |
+
cosine_constant_lr_ratio: # freeze lr at some percentage of the step, e.g. cosine_constant_lr_ratio=0.8 means start cosine_min_lr at 80% of training step (https://arxiv.org/pdf/2308.04014.pdf)
|
322 |
+
|
323 |
+
# For one_cycle optim
|
324 |
+
lr_div_factor: # Learning rate div factor
|
325 |
+
|
326 |
+
# Specify optimizer
|
327 |
+
# Valid values are driven by the Transformers OptimizerNames class, see:
|
328 |
+
# https://github.com/huggingface/transformers/blob/95b374952dc27d8511541d6f5a4e22c9ec11fb24/src/transformers/training_args.py#L134
|
329 |
+
#
|
330 |
+
# Note that not all optimizers may be available in your environment, ex: 'adamw_anyprecision' is part of
|
331 |
+
# torchdistx, 'adamw_bnb_8bit' is part of bnb.optim.Adam8bit, etc. When in doubt, it is recommended to start with the optimizer used
|
332 |
+
# in the examples/ for your model and fine-tuning use case.
|
333 |
+
#
|
334 |
+
# Valid values for 'optimizer' include:
|
335 |
+
# - adamw_hf
|
336 |
+
# - adamw_torch
|
337 |
+
# - adamw_torch_fused
|
338 |
+
# - adamw_torch_xla
|
339 |
+
# - adamw_apex_fused
|
340 |
+
# - adafactor
|
341 |
+
# - adamw_anyprecision
|
342 |
+
# - sgd
|
343 |
+
# - adagrad
|
344 |
+
# - adamw_bnb_8bit
|
345 |
+
# - lion_8bit
|
346 |
+
# - lion_32bit
|
347 |
+
# - paged_adamw_32bit
|
348 |
+
# - paged_adamw_8bit
|
349 |
+
# - paged_lion_32bit
|
350 |
+
# - paged_lion_8bit
|
351 |
+
# - galore_adamw
|
352 |
+
# - galore_adamw_8bit
|
353 |
+
# - galore_adafactor
|
354 |
+
# - galore_adamw_layerwise
|
355 |
+
# - galore_adamw_8bit_layerwise
|
356 |
+
# - galore_adafactor_layerwise
|
357 |
+
optimizer:
|
358 |
+
# Dictionary of arguments to pass to the optimizer
|
359 |
+
optim_args:
|
360 |
+
# For Galore Optimizers the following optim_args are available
|
361 |
+
# rank: # type: int
|
362 |
+
# update_proj_gap # type: int
|
363 |
+
# scale # type: float
|
364 |
+
# proj_type: # type: str, default = std
|
365 |
+
|
366 |
+
# The target modules to optimize, i.e. the module names that you would like to train, right now this is used only for GaLore algorithm
|
367 |
+
optim_target_modules:
|
368 |
+
# - self_attn # for llama
|
369 |
+
# - mlp
|
370 |
+
|
371 |
+
# Specify weight decay
|
372 |
+
weight_decay:
|
373 |
+
# adamw hyperparams
|
374 |
+
adam_beta1:
|
375 |
+
adam_beta2:
|
376 |
+
adam_epsilon:
|
377 |
+
# Gradient clipping max norm
|
378 |
+
max_grad_norm:
|
379 |
+
|
380 |
+
# Augmentation techniques
|
381 |
+
# NEFT https://arxiv.org/abs/2310.05914, set this to a number (paper default is 5) to add noise to embeddings
|
382 |
+
# currently only supported on Llama and Mistral
|
383 |
+
neftune_noise_alpha:
|
384 |
+
|
385 |
+
# Whether to bettertransformers
|
386 |
+
flash_optimum:
|
387 |
+
# Whether to use xformers attention patch https://github.com/facebookresearch/xformers:
|
388 |
+
xformers_attention:
|
389 |
+
# Whether to use flash attention patch https://github.com/Dao-AILab/flash-attention:
|
390 |
+
flash_attention:
|
391 |
+
flash_attn_cross_entropy: # Whether to use flash-attention cross entropy implementation - advanced use only
|
392 |
+
flash_attn_rms_norm: # Whether to use flash-attention rms norm implementation - advanced use only
|
393 |
+
flash_attn_fuse_qkv: # Whether to fuse QKV into a single operation
|
394 |
+
flash_attn_fuse_mlp: # Whether to fuse part of the MLP into a single operation
|
395 |
+
# Whether to use scaled-dot-product attention
|
396 |
+
# https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
|
397 |
+
sdp_attention:
|
398 |
+
# Shifted-sparse attention (only llama) - https://arxiv.org/pdf/2309.12307.pdf
|
399 |
+
s2_attention:
|
400 |
+
# Resume from a specific checkpoint dir
|
401 |
+
resume_from_checkpoint:
|
402 |
+
# If resume_from_checkpoint isn't set and you simply want it to start where it left off.
|
403 |
+
# Be careful with this being turned on between different models.
|
404 |
+
auto_resume_from_checkpoints: false
|
405 |
+
|
406 |
+
# Don't mess with this, it's here for accelerate and torchrun
|
407 |
+
local_rank:
|
408 |
+
|
409 |
+
# Add or change special tokens.
|
410 |
+
# If you add tokens here, you don't need to add them to the `tokens` list.
|
411 |
+
special_tokens:
|
412 |
+
# bos_token: "<s>"
|
413 |
+
# eos_token: "</s>"
|
414 |
+
# unk_token: "<unk>"
|
415 |
+
|
416 |
+
# Add extra tokens.
|
417 |
+
tokens:
|
418 |
+
|
419 |
+
# FSDP
|
420 |
+
fsdp:
|
421 |
+
fsdp_config:
|
422 |
+
|
423 |
+
# Deepspeed config path. e.g., deepspeed_configs/zero3.json
|
424 |
+
deepspeed:
|
425 |
+
|
426 |
+
# Advanced DDP Arguments
|
427 |
+
ddp_timeout:
|
428 |
+
ddp_bucket_cap_mb:
|
429 |
+
ddp_broadcast_buffers:
|
430 |
+
|
431 |
+
# Path to torch distx for optim 'adamw_anyprecision'
|
432 |
+
torchdistx_path:
|
433 |
+
|
434 |
+
# Set to HF dataset for type: 'completion' for streaming instead of pre-tokenize
|
435 |
+
pretraining_dataset:
|
436 |
+
|
437 |
+
# Debug mode
|
438 |
+
debug:
|
439 |
+
|
440 |
+
# Seed
|
441 |
+
seed:
|
442 |
+
|
443 |
+
# Allow overwrite yml config using from cli
|
444 |
+
strict:
|
445 |
```
|
docs/dataset-formats/conversation.qmd
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Conversation
|
3 |
+
description: Conversation format for supervised fine-tuning.
|
4 |
+
order: 1
|
5 |
+
---
|
6 |
+
|
7 |
+
## Formats
|
8 |
+
|
9 |
+
### sharegpt
|
10 |
+
|
11 |
+
conversations where `from` is `human`/`gpt`. (optional: first row with role `system` to override default system prompt)
|
12 |
+
|
13 |
+
```{.json filename="data.jsonl"}
|
14 |
+
{"conversations": [{"from": "...", "value": "..."}]}
|
15 |
+
```
|
16 |
+
|
17 |
+
Note: `type: sharegpt` opens a special config `conversation:` that enables conversions to many Conversation types. See [the docs](../docs/config.qmd) for all config options.
|
18 |
+
|
19 |
+
### pygmalion
|
20 |
+
|
21 |
+
```{.json filename="data.jsonl"}
|
22 |
+
{"conversations": [{"role": "...", "value": "..."}]}
|
23 |
+
```
|
24 |
+
|
25 |
+
### sharegpt.load_role
|
26 |
+
|
27 |
+
conversations where `role` is used instead of `from`
|
28 |
+
|
29 |
+
```{.json filename="data.jsonl"}
|
30 |
+
{"conversations": [{"role": "...", "value": "..."}]}
|
31 |
+
```
|
32 |
+
|
33 |
+
### sharegpt.load_guanaco
|
34 |
+
|
35 |
+
conversations where `from` is `prompter` `assistant` instead of default sharegpt
|
36 |
+
|
37 |
+
```{.json filename="data.jsonl"}
|
38 |
+
{"conversations": [{"from": "...", "value": "..."}]}
|
39 |
+
```
|
40 |
+
|
41 |
+
### sharegpt_jokes
|
42 |
+
|
43 |
+
creates a chat where bot is asked to tell a joke, then explain why the joke is funny
|
44 |
+
|
45 |
+
```{.json filename="data.jsonl"}
|
46 |
+
{"conversations": [{"title": "...", "text": "...", "explanation": "..."}]}
|
47 |
+
```
|
48 |
+
|
49 |
+
## How to add custom prompts for instruction-tuning
|
50 |
+
|
51 |
+
For a dataset that is preprocessed for instruction purposes:
|
52 |
+
|
53 |
+
```{.json filename="data.jsonl"}
|
54 |
+
{"input": "...", "output": "..."}
|
55 |
+
```
|
56 |
+
|
57 |
+
You can use this example in your YAML config:
|
58 |
+
|
59 |
+
```{.yaml filename="config.yaml"}
|
60 |
+
datasets:
|
61 |
+
- path: repo
|
62 |
+
type:
|
63 |
+
system_prompt: ""
|
64 |
+
field_system: system
|
65 |
+
field_instruction: input
|
66 |
+
field_output: output
|
67 |
+
format: "[INST] {instruction} [/INST]"
|
68 |
+
no_input_format: "[INST] {instruction} [/INST]"
|
69 |
+
```
|
70 |
+
|
71 |
+
See full config options under [here](../docs/config.qmd).
|
docs/dataset-formats/index.qmd
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Dataset Formats
|
3 |
+
description: Supported dataset formats.
|
4 |
+
listing:
|
5 |
+
fields: [title, description]
|
6 |
+
type: table
|
7 |
+
sort-ui: false
|
8 |
+
filter-ui: false
|
9 |
+
max-description-length: 250
|
10 |
+
---
|
11 |
+
|
12 |
+
Axolotl supports a variety of dataset formats. It is recommended to use a JSONL format. The schema of the JSONL depends upon the task and the prompt template you wish to use. Instead of a JSONL, you can also use a HuggingFace dataset with columns for each JSONL field.
|
13 |
+
|
14 |
+
Below are these various formats organized by task:
|
docs/dataset-formats/inst_tune.qmd
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Instruction Tuning
|
3 |
+
description: Instruction tuning formats for supervised fine-tuning.
|
4 |
+
order: 2
|
5 |
+
---
|
6 |
+
|
7 |
+
## alpaca
|
8 |
+
|
9 |
+
instruction; input(optional)
|
10 |
+
|
11 |
+
```{.json filename="data.jsonl"}
|
12 |
+
{"instruction": "...", "input": "...", "output": "..."}
|
13 |
+
```
|
14 |
+
|
15 |
+
## jeopardy
|
16 |
+
|
17 |
+
question and answer
|
18 |
+
|
19 |
+
```{.json filename="data.jsonl"}
|
20 |
+
{"question": "...", "category": "...", "answer": "..."}
|
21 |
+
```
|
22 |
+
|
23 |
+
## oasst
|
24 |
+
|
25 |
+
instruction
|
26 |
+
|
27 |
+
```{.json filename="data.jsonl"}
|
28 |
+
{"INSTRUCTION": "...", "RESPONSE": "..."}
|
29 |
+
```
|
30 |
+
|
31 |
+
## gpteacher
|
32 |
+
|
33 |
+
instruction; input(optional)
|
34 |
+
|
35 |
+
```{.json filename="data.jsonl"}
|
36 |
+
{"instruction": "...", "input": "...", "response": "..."}
|
37 |
+
```
|
38 |
+
|
39 |
+
## reflection
|
40 |
+
|
41 |
+
instruction with reflect; input(optional)
|
42 |
+
|
43 |
+
```{.json filename="data.jsonl"}
|
44 |
+
{"instruction": "...", "input": "...", "output": "...", "reflection": "...", "corrected": "..."}
|
45 |
+
```
|
46 |
+
|
47 |
+
## explainchoice
|
48 |
+
|
49 |
+
question, choices, (solution OR explanation)
|
50 |
+
|
51 |
+
```{.json filename="data.jsonl"}
|
52 |
+
{"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."}
|
53 |
+
```
|
54 |
+
|
55 |
+
## concisechoice
|
56 |
+
|
57 |
+
question, choices, (solution OR explanation)
|
58 |
+
|
59 |
+
```{.json filename="data.jsonl"}
|
60 |
+
{"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."}
|
61 |
+
```
|
62 |
+
|
63 |
+
## summarizetldr
|
64 |
+
|
65 |
+
article and summary
|
66 |
+
|
67 |
+
```{.json filename="data.jsonl"}
|
68 |
+
{"article": "...", "summary": "..."}
|
69 |
+
```
|
70 |
+
|
71 |
+
## alpaca_chat
|
72 |
+
|
73 |
+
basic instruct for alpaca chat
|
74 |
+
|
75 |
+
```{.json filename="data.jsonl"}
|
76 |
+
{"instruction": "...", "input": "...", "response": "..."}
|
77 |
+
```
|
78 |
+
|
79 |
+
## alpaca_chat.load_qa
|
80 |
+
|
81 |
+
question and answer for alpaca chat
|
82 |
+
|
83 |
+
```{.json filename="data.jsonl"}
|
84 |
+
{"question": "...", "answer": "..."}
|
85 |
+
```
|
86 |
+
|
87 |
+
## alpaca_chat.load_concise
|
88 |
+
|
89 |
+
question and answer for alpaca chat, for concise answers
|
90 |
+
|
91 |
+
```{.json filename="data.jsonl"}
|
92 |
+
{"instruction": "...", "input": "...", "response": "..."}
|
93 |
+
```
|
94 |
+
|
95 |
+
## alpaca_chat.load_camel_ai
|
96 |
+
|
97 |
+
question and answer for alpaca chat, for load_camel_ai
|
98 |
+
|
99 |
+
```{.json filename="data.jsonl"}
|
100 |
+
{"message_1": "...", "message_2": "..."}
|
101 |
+
```
|
102 |
+
|
103 |
+
## alpaca_w_system.load_open_orca
|
104 |
+
|
105 |
+
support for open orca datasets with included system prompts, instruct
|
106 |
+
|
107 |
+
```{.json filename="data.jsonl"}
|
108 |
+
{"system_prompt": "...", "question": "...", "response": "..."}
|
109 |
+
```
|
110 |
+
|
111 |
+
## context_qa
|
112 |
+
|
113 |
+
in context question answering from an article
|
114 |
+
|
115 |
+
```{.json filename="data.jsonl"}
|
116 |
+
{"article": "...", "question": "...", "answer": "..."}
|
117 |
+
```
|
118 |
+
|
119 |
+
## context_qa.load_v2
|
120 |
+
|
121 |
+
in context question answering (alternate)
|
122 |
+
|
123 |
+
```{.json filename="data.jsonl"}
|
124 |
+
{"context": "...", "question": "...", "answer": "..."}
|
125 |
+
```
|
126 |
+
|
127 |
+
## context_qa.load_404
|
128 |
+
|
129 |
+
in context question answering from an article, with default response for no answer from context
|
130 |
+
|
131 |
+
```{.json filename="data.jsonl"}
|
132 |
+
{"article": "...", "unanswerable_question": "..."}
|
133 |
+
```
|
134 |
+
|
135 |
+
## creative_acr.load_answer
|
136 |
+
|
137 |
+
instruction and revision
|
138 |
+
|
139 |
+
```{.json filename="data.jsonl"}
|
140 |
+
{"instruction": "...", "revision": "..."}
|
141 |
+
```
|
142 |
+
|
143 |
+
## creative_acr.load_critique
|
144 |
+
|
145 |
+
critique
|
146 |
+
|
147 |
+
```{.json filename="data.jsonl"}
|
148 |
+
{"scores": "...", "critiques": "...", "instruction": "...", "answer": "..."}
|
149 |
+
```
|
150 |
+
|
151 |
+
## creative_acr.load_revise
|
152 |
+
|
153 |
+
critique and revise
|
154 |
+
|
155 |
+
```{.json filename="data.jsonl"}
|
156 |
+
{"scores": "...", "critiques": "...", "instruction": "...", "answer": "...", "revision": "..."}
|
157 |
+
```
|
158 |
+
|
159 |
+
## metharme
|
160 |
+
|
161 |
+
instruction, adds additional eos tokens
|
162 |
+
|
163 |
+
```{.json filename="data.jsonl"}
|
164 |
+
{"prompt": "...", "generation": "..."}
|
165 |
+
```
|
docs/dataset-formats/pretraining.qmd
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Pre-training
|
3 |
+
description: Data format for a pre-training completion task.
|
4 |
+
order: 3
|
5 |
+
---
|
6 |
+
|
7 |
+
For pretraining, there is no prompt template or roles. The only required field is `text`:
|
8 |
+
|
9 |
+
```{.json filename="data.jsonl"}
|
10 |
+
{"text": "first row"}
|
11 |
+
{"text": "second row"}
|
12 |
+
...
|
13 |
+
```
|
14 |
+
|
15 |
+
:::{.callout-note}
|
16 |
+
|
17 |
+
### Streaming is recommended for large datasets
|
18 |
+
|
19 |
+
Axolotl usually loads the entire dataset into memory. This will be challenging for large datasets. Use the following config to enable streaming:
|
20 |
+
|
21 |
+
```{.yaml filename="config.yaml"}
|
22 |
+
pretraining_dataset: # hf path only
|
23 |
+
...
|
24 |
+
```
|
25 |
+
|
26 |
+
:::
|
docs/dataset-formats/template_free.qmd
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Template-Free
|
3 |
+
description: Construct prompts without a template.
|
4 |
+
order: 4
|
5 |
+
---
|
6 |
+
|
7 |
+
See [these docs](../input_output.qmd).
|
docs/dataset-formats/tokenized.qmd
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Custom Pre-Tokenized Dataset
|
3 |
+
description: How to use a custom pre-tokenized dataset.
|
4 |
+
order: 5
|
5 |
+
---
|
6 |
+
|
7 |
+
- Do not pass a `type:` in your axolotl config.
|
8 |
+
- Columns in Dataset must be exactly `input_ids`, `attention_mask`, `labels`
|
9 |
+
|
10 |
+
```{.yaml filename="config.yml"}
|
11 |
+
- path: ...
|
12 |
+
```
|
docs/fsdp_qlora.qmd
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title: FDSP + QLoRA
|
3 |
description: Use FSDP with QLoRA to fine-tune large LLMs on consumer GPUs.
|
4 |
format:
|
5 |
html:
|
|
|
1 |
---
|
2 |
+
title: "FDSP + QLoRA"
|
3 |
description: Use FSDP with QLoRA to fine-tune large LLMs on consumer GPUs.
|
4 |
format:
|
5 |
html:
|
docs/input_output.qmd
CHANGED
@@ -91,8 +91,9 @@ format into a jsonl file (below is the first row from the file
|
|
91 |
|
92 |
```bash
|
93 |
$ head -n1 output.jsonl | python -m json.tool
|
|
|
94 |
|
95 |
-
{.cell-output .cell-output-stdout}
|
96 |
{
|
97 |
"segments": [
|
98 |
{
|
@@ -113,7 +114,7 @@ $ head -n1 output.jsonl | python -m json.tool
|
|
113 |
}
|
114 |
]
|
115 |
}
|
116 |
-
|
117 |
|
118 |
Set `label:false` when you want to mask a segment of text so that the
|
119 |
model isn't trained on it. Some things to keep in mind:
|
@@ -238,8 +239,9 @@ version is repeated below for reference):
|
|
238 |
|
239 |
```bash
|
240 |
$ head -n1 output.jsonl | python -m json.tool
|
|
|
241 |
|
242 |
-
{.cell-output .cell-output-stdout}
|
243 |
{
|
244 |
"segments": [
|
245 |
{
|
@@ -260,4 +262,4 @@ $ head -n1 output.jsonl | python -m json.tool
|
|
260 |
}
|
261 |
]
|
262 |
}
|
263 |
-
|
|
|
91 |
|
92 |
```bash
|
93 |
$ head -n1 output.jsonl | python -m json.tool
|
94 |
+
```
|
95 |
|
96 |
+
:::{.cell-output .cell-output-stdout}
|
97 |
{
|
98 |
"segments": [
|
99 |
{
|
|
|
114 |
}
|
115 |
]
|
116 |
}
|
117 |
+
:::
|
118 |
|
119 |
Set `label:false` when you want to mask a segment of text so that the
|
120 |
model isn't trained on it. Some things to keep in mind:
|
|
|
239 |
|
240 |
```bash
|
241 |
$ head -n1 output.jsonl | python -m json.tool
|
242 |
+
```
|
243 |
|
244 |
+
:::{.cell-output .cell-output-stdout}
|
245 |
{
|
246 |
"segments": [
|
247 |
{
|
|
|
262 |
}
|
263 |
]
|
264 |
}
|
265 |
+
:::
|