Jeopardy bot! (#17)
Browse files* support for jeopardy dataset
* commit the final config for jeopardy bot
- configs/llama_7B_jeopardy.yml +58 -0
- src/axolotl/prompt_tokenizers.py +9 -0
- src/axolotl/prompters.py +4 -0
- src/axolotl/utils/data.py +8 -2
configs/llama_7B_jeopardy.yml
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model: huggyllama/llama-7b
|
2 |
+
base_model_config: huggyllama/llama-7b
|
3 |
+
model_type: LlamaForCausalLM
|
4 |
+
tokenizer_type: LlamaTokenizer
|
5 |
+
load_in_8bit: false
|
6 |
+
datasets:
|
7 |
+
- path: openaccess-ai-collective/jeopardy
|
8 |
+
type: jeopardy
|
9 |
+
dataset_prepared_path: last_run_prepared
|
10 |
+
val_set_size: 0.01
|
11 |
+
adapter:
|
12 |
+
lora_model_dir:
|
13 |
+
sequence_len: 2048
|
14 |
+
max_packed_sequence_len: 2048
|
15 |
+
lora_r: 8
|
16 |
+
lora_alpha: 16
|
17 |
+
lora_dropout: 0.05
|
18 |
+
lora_target_modules:
|
19 |
+
- q_proj
|
20 |
+
- v_proj
|
21 |
+
lora_fan_in_fan_out: false
|
22 |
+
wandb_project: jeopardy-bot-7b
|
23 |
+
wandb_watch:
|
24 |
+
wandb_run_id:
|
25 |
+
wandb_log_model: checkpoint
|
26 |
+
output_dir: ./jeopardy-bot-7b
|
27 |
+
batch_size: 4
|
28 |
+
micro_batch_size: 1
|
29 |
+
num_epochs: 2
|
30 |
+
optimizer: adamw_bnb_8bit
|
31 |
+
torchdistx_path:
|
32 |
+
lr_scheduler: cosine
|
33 |
+
learning_rate: 0.0000002
|
34 |
+
train_on_inputs: false
|
35 |
+
group_by_length: false
|
36 |
+
bf16: true
|
37 |
+
tf32: true
|
38 |
+
early_stopping_patience:
|
39 |
+
resume_from_checkpoint:
|
40 |
+
local_rank:
|
41 |
+
logging_steps: 5
|
42 |
+
xformers_attention: true
|
43 |
+
flash_attention:
|
44 |
+
gptq_groupsize:
|
45 |
+
gptq_model_v1:
|
46 |
+
warmup_steps: 20
|
47 |
+
eval_steps: 110
|
48 |
+
save_steps: 660
|
49 |
+
debug:
|
50 |
+
deepspeed:
|
51 |
+
weight_decay: 0.0001
|
52 |
+
fsdp:
|
53 |
+
fsdp_config:
|
54 |
+
special_tokens:
|
55 |
+
pad_token: "[PAD]"
|
56 |
+
bos_token: "<s>"
|
57 |
+
eos_token: "</s>"
|
58 |
+
unk_token: "<unk>"
|
src/axolotl/prompt_tokenizers.py
CHANGED
@@ -89,6 +89,15 @@ class AlpacaPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
|
89 |
)
|
90 |
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
class OpenAssistantPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
93 |
def parse_instruction_fields(self, prompt) -> (str, str, str):
|
94 |
return (
|
|
|
89 |
)
|
90 |
|
91 |
|
92 |
+
class JeopardyPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
93 |
+
def parse_instruction_fields(self, prompt) -> (str, str, str):
|
94 |
+
return (
|
95 |
+
prompt["question"],
|
96 |
+
prompt["category"],
|
97 |
+
"what is " + prompt["answer"],
|
98 |
+
)
|
99 |
+
|
100 |
+
|
101 |
class OpenAssistantPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
102 |
def parse_instruction_fields(self, prompt) -> (str, str, str):
|
103 |
return (
|
src/axolotl/prompters.py
CHANGED
@@ -31,6 +31,10 @@ class AlpacaPrompter:
|
|
31 |
return output.split(self.response_split)[1].strip()
|
32 |
|
33 |
|
|
|
|
|
|
|
|
|
34 |
class GPTeacherPrompter(AlpacaPrompter):
|
35 |
...
|
36 |
|
|
|
31 |
return output.split(self.response_split)[1].strip()
|
32 |
|
33 |
|
34 |
+
class JeopardyPrompter(AlpacaPrompter):
|
35 |
+
prompt_input = "Below is a Jeopardy clue paired with input providing the category of the clue. Write a concise response that best answers tbe clue given the category.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
|
36 |
+
|
37 |
+
|
38 |
class GPTeacherPrompter(AlpacaPrompter):
|
39 |
...
|
40 |
|
src/axolotl/utils/data.py
CHANGED
@@ -11,13 +11,13 @@ from axolotl.prompt_tokenizers import (
|
|
11 |
GPTeacherPromptTokenizingStrategy,
|
12 |
OpenAssistantPromptTokenizingStrategy,
|
13 |
AlpacaReflectionPTStrategy,
|
14 |
-
ShareGPTPromptTokenizingStrategy,
|
15 |
)
|
16 |
from axolotl.prompters import (
|
17 |
AlpacaPrompter,
|
18 |
GPTeacherPrompter,
|
19 |
ReflectAlpacaPrompter,
|
20 |
-
ShareGPTPrompter,
|
21 |
)
|
22 |
|
23 |
|
@@ -82,6 +82,12 @@ def load_prepare_datasets(tokenizer, cfg, default_dataset_prepared_path):
|
|
82 |
)
|
83 |
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
|
84 |
datasets.append(ds_wrapper)
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
elif d.type == "oasst":
|
86 |
ds_strategy = OpenAssistantPromptTokenizingStrategy(
|
87 |
AlpacaPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len
|
|
|
11 |
GPTeacherPromptTokenizingStrategy,
|
12 |
OpenAssistantPromptTokenizingStrategy,
|
13 |
AlpacaReflectionPTStrategy,
|
14 |
+
ShareGPTPromptTokenizingStrategy, JeopardyPromptTokenizingStrategy,
|
15 |
)
|
16 |
from axolotl.prompters import (
|
17 |
AlpacaPrompter,
|
18 |
GPTeacherPrompter,
|
19 |
ReflectAlpacaPrompter,
|
20 |
+
ShareGPTPrompter, JeopardyPrompter,
|
21 |
)
|
22 |
|
23 |
|
|
|
82 |
)
|
83 |
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
|
84 |
datasets.append(ds_wrapper)
|
85 |
+
if d.type == "jeopardy":
|
86 |
+
ds_strategy = JeopardyPromptTokenizingStrategy(
|
87 |
+
JeopardyPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len
|
88 |
+
)
|
89 |
+
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
|
90 |
+
datasets.append(ds_wrapper)
|
91 |
elif d.type == "oasst":
|
92 |
ds_strategy = OpenAssistantPromptTokenizingStrategy(
|
93 |
AlpacaPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len
|