fix logging
Browse files- scripts/finetune.py +11 -12
scripts/finetune.py
CHANGED
@@ -38,8 +38,7 @@ from axolotl.prompt_tokenizers import (
|
|
38 |
)
|
39 |
from axolotl.prompters import AlpacaPrompter, GPTeacherPrompter, ShareGPTPrompter
|
40 |
|
41 |
-
|
42 |
-
logger.setLevel(os.getenv("LOG_LEVEL", "INFO"))
|
43 |
DEFAULT_DATASET_PREPARED_PATH = "data/last_run"
|
44 |
|
45 |
|
@@ -171,8 +170,8 @@ def check_dataset_labels(dataset, tokenizer):
|
|
171 |
)
|
172 |
colored_tokens.append(colored_token)
|
173 |
|
174 |
-
|
175 |
-
|
176 |
|
177 |
|
178 |
def do_inference(cfg, model, tokenizer):
|
@@ -349,9 +348,9 @@ def train(
|
|
349 |
return
|
350 |
|
351 |
if cfg.dataset_prepared_path and any(Path(cfg.dataset_prepared_path).glob("*")):
|
352 |
-
|
353 |
dataset = load_from_disk(cfg.dataset_prepared_path)
|
354 |
-
|
355 |
else:
|
356 |
datasets = []
|
357 |
for d in cfg.datasets:
|
@@ -391,14 +390,14 @@ def train(
|
|
391 |
).train_test_split(test_size=cfg.val_set_size, shuffle=True, seed=42)
|
392 |
|
393 |
if cfg.local_rank == 0:
|
394 |
-
|
395 |
if cfg.dataset_prepared_path:
|
396 |
dataset.save_to_disk(cfg.dataset_prepared_path)
|
397 |
else:
|
398 |
dataset.save_to_disk(DEFAULT_DATASET_PREPARED_PATH)
|
399 |
|
400 |
if prepare_ds_only:
|
401 |
-
|
402 |
return
|
403 |
|
404 |
train_dataset = dataset["train"]
|
@@ -415,11 +414,11 @@ def train(
|
|
415 |
model.config.use_cache = False
|
416 |
|
417 |
if torch.__version__ >= "2" and sys.platform != "win32":
|
418 |
-
|
419 |
model = torch.compile(model)
|
420 |
|
421 |
# go ahead and presave, so we have the adapter config available to inspect
|
422 |
-
|
423 |
lora_config.save_pretrained(cfg.output_dir)
|
424 |
|
425 |
# In case we want to stop early with ctrl+c, this is a nice to have to save the pretrained model
|
@@ -428,11 +427,11 @@ def train(
|
|
428 |
lambda signal, frame: (model.save_pretrained(cfg.output_dir), exit(0)),
|
429 |
)
|
430 |
|
431 |
-
|
432 |
trainer.train(resume_from_checkpoint=cfg.resume_from_checkpoint)
|
433 |
|
434 |
# TODO do we need this fix? https://huggingface.co/docs/accelerate/usage_guides/fsdp#saving-and-loading
|
435 |
-
|
436 |
model.save_pretrained(cfg.output_dir)
|
437 |
|
438 |
|
|
|
38 |
)
|
39 |
from axolotl.prompters import AlpacaPrompter, GPTeacherPrompter, ShareGPTPrompter
|
40 |
|
41 |
+
logging.basicConfig(level=os.getenv("LOG_LEVEL", "INFO"))
|
|
|
42 |
DEFAULT_DATASET_PREPARED_PATH = "data/last_run"
|
43 |
|
44 |
|
|
|
170 |
)
|
171 |
colored_tokens.append(colored_token)
|
172 |
|
173 |
+
logging.info(" ".join(colored_tokens))
|
174 |
+
logging.info("\n\n\n")
|
175 |
|
176 |
|
177 |
def do_inference(cfg, model, tokenizer):
|
|
|
348 |
return
|
349 |
|
350 |
if cfg.dataset_prepared_path and any(Path(cfg.dataset_prepared_path).glob("*")):
|
351 |
+
logging.info("Loading prepared dataset from disk...")
|
352 |
dataset = load_from_disk(cfg.dataset_prepared_path)
|
353 |
+
logging.info("Prepared dataset loaded from disk...")
|
354 |
else:
|
355 |
datasets = []
|
356 |
for d in cfg.datasets:
|
|
|
390 |
).train_test_split(test_size=cfg.val_set_size, shuffle=True, seed=42)
|
391 |
|
392 |
if cfg.local_rank == 0:
|
393 |
+
logging.info("Saving prepared dataset to disk...")
|
394 |
if cfg.dataset_prepared_path:
|
395 |
dataset.save_to_disk(cfg.dataset_prepared_path)
|
396 |
else:
|
397 |
dataset.save_to_disk(DEFAULT_DATASET_PREPARED_PATH)
|
398 |
|
399 |
if prepare_ds_only:
|
400 |
+
logging.info("Finished preparing dataset. Exiting...")
|
401 |
return
|
402 |
|
403 |
train_dataset = dataset["train"]
|
|
|
414 |
model.config.use_cache = False
|
415 |
|
416 |
if torch.__version__ >= "2" and sys.platform != "win32":
|
417 |
+
logging.info("Compiling torch model")
|
418 |
model = torch.compile(model)
|
419 |
|
420 |
# go ahead and presave, so we have the adapter config available to inspect
|
421 |
+
logging.info(f"Pre-saving adapter config to {cfg.output_dir}")
|
422 |
lora_config.save_pretrained(cfg.output_dir)
|
423 |
|
424 |
# In case we want to stop early with ctrl+c, this is a nice to have to save the pretrained model
|
|
|
427 |
lambda signal, frame: (model.save_pretrained(cfg.output_dir), exit(0)),
|
428 |
)
|
429 |
|
430 |
+
logging.info("Starting trainer...")
|
431 |
trainer.train(resume_from_checkpoint=cfg.resume_from_checkpoint)
|
432 |
|
433 |
# TODO do we need this fix? https://huggingface.co/docs/accelerate/usage_guides/fsdp#saving-and-loading
|
434 |
+
logging.info(f"Training Completed!!! Saving pre-trained model to {cfg.output_dir}")
|
435 |
model.save_pretrained(cfg.output_dir)
|
436 |
|
437 |
|