misc fixes/improvements (#513)
Browse files- src/axolotl/train.py +5 -3
- src/axolotl/utils/trainer.py +11 -7
src/axolotl/train.py
CHANGED
@@ -88,6 +88,11 @@ def train(
|
|
88 |
if peft_config:
|
89 |
LOG.info(f"Pre-saving adapter config to {cfg.output_dir}")
|
90 |
peft_config.save_pretrained(cfg.output_dir)
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
# In case we want to stop early with ctrl+c, this is a nice to have to save the pretrained model
|
93 |
if cfg.local_rank == 0:
|
@@ -106,9 +111,6 @@ def train(
|
|
106 |
if cfg.group_by_length:
|
107 |
LOG.info("hang tight... sorting dataset for group_by_length")
|
108 |
|
109 |
-
if not Path(cfg.output_dir).is_dir():
|
110 |
-
os.makedirs(cfg.output_dir, exist_ok=True)
|
111 |
-
tokenizer.save_pretrained(cfg.output_dir)
|
112 |
if cfg.flash_optimum:
|
113 |
with torch.backends.cuda.sdp_kernel(
|
114 |
enable_flash=True, enable_math=True, enable_mem_efficient=True
|
|
|
88 |
if peft_config:
|
89 |
LOG.info(f"Pre-saving adapter config to {cfg.output_dir}")
|
90 |
peft_config.save_pretrained(cfg.output_dir)
|
91 |
+
# additionally presave the tokenizer and model configs
|
92 |
+
if not Path(cfg.output_dir).is_dir():
|
93 |
+
os.makedirs(cfg.output_dir, exist_ok=True)
|
94 |
+
tokenizer.save_pretrained(str(Path(cfg.output_dir)))
|
95 |
+
model.config.save_pretrained(str(Path(cfg.output_dir)))
|
96 |
|
97 |
# In case we want to stop early with ctrl+c, this is a nice to have to save the pretrained model
|
98 |
if cfg.local_rank == 0:
|
|
|
111 |
if cfg.group_by_length:
|
112 |
LOG.info("hang tight... sorting dataset for group_by_length")
|
113 |
|
|
|
|
|
|
|
114 |
if cfg.flash_optimum:
|
115 |
with torch.backends.cuda.sdp_kernel(
|
116 |
enable_flash=True, enable_math=True, enable_mem_efficient=True
|
src/axolotl/utils/trainer.py
CHANGED
@@ -33,6 +33,7 @@ from axolotl.utils.callbacks import (
|
|
33 |
)
|
34 |
from axolotl.utils.collators import DataCollatorForSeq2Seq
|
35 |
from axolotl.utils.dataloader import MultipackDistributedDataloader
|
|
|
36 |
from axolotl.utils.schedulers import get_cosine_schedule_with_quadratic_warmup
|
37 |
|
38 |
LOG = logging.getLogger("axolotl")
|
@@ -375,14 +376,17 @@ def disable_datasets_caching():
|
|
375 |
|
376 |
def process_datasets_for_packing(cfg, train_dataset, eval_dataset):
|
377 |
drop_long = partial(drop_long_seq, sequence_len=cfg.sequence_len)
|
378 |
-
|
379 |
-
|
380 |
-
eval_dataset = eval_dataset.filter(drop_long, num_proc=os.cpu_count())
|
381 |
-
|
382 |
-
if cfg.sample_packing:
|
383 |
-
train_dataset = train_dataset.map(add_position_ids, num_proc=os.cpu_count())
|
384 |
if eval_dataset:
|
385 |
-
eval_dataset = eval_dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
386 |
return train_dataset, eval_dataset
|
387 |
|
388 |
|
|
|
33 |
)
|
34 |
from axolotl.utils.collators import DataCollatorForSeq2Seq
|
35 |
from axolotl.utils.dataloader import MultipackDistributedDataloader
|
36 |
+
from axolotl.utils.distributed import is_main_process, zero_first
|
37 |
from axolotl.utils.schedulers import get_cosine_schedule_with_quadratic_warmup
|
38 |
|
39 |
LOG = logging.getLogger("axolotl")
|
|
|
376 |
|
377 |
def process_datasets_for_packing(cfg, train_dataset, eval_dataset):
|
378 |
drop_long = partial(drop_long_seq, sequence_len=cfg.sequence_len)
|
379 |
+
with zero_first(is_main_process()):
|
380 |
+
train_dataset = train_dataset.filter(drop_long, num_proc=os.cpu_count())
|
|
|
|
|
|
|
|
|
381 |
if eval_dataset:
|
382 |
+
eval_dataset = eval_dataset.filter(drop_long, num_proc=os.cpu_count())
|
383 |
+
|
384 |
+
if cfg.sample_packing:
|
385 |
+
train_dataset = train_dataset.map(add_position_ids, num_proc=os.cpu_count())
|
386 |
+
if eval_dataset:
|
387 |
+
eval_dataset = eval_dataset.map(
|
388 |
+
add_position_ids, num_proc=os.cpu_count()
|
389 |
+
)
|
390 |
return train_dataset, eval_dataset
|
391 |
|
392 |
|