black formatting
Browse files- scripts/alpaca_json_to_jsonl.py +4 -5
- scripts/finetune.py +49 -26
- src/axolotl/convert.py +0 -2
- src/axolotl/datasets.py +14 -4
- src/axolotl/prompt_tokenizers.py +3 -1
- src/axolotl/prompters.py +23 -18
scripts/alpaca_json_to_jsonl.py
CHANGED
@@ -6,12 +6,13 @@ import fire
|
|
6 |
from typing import Optional
|
7 |
|
8 |
# add src to the pythonpath so we don't need to pip install this
|
9 |
-
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__),
|
10 |
-
src_dir = os.path.join(project_root,
|
11 |
sys.path.insert(0, src_dir)
|
12 |
|
13 |
from axolotl.convert import *
|
14 |
|
|
|
15 |
def main(
|
16 |
input: Path,
|
17 |
output: Optional[Path] = None,
|
@@ -25,9 +26,7 @@ def main(
|
|
25 |
json_parser = JsonParser()
|
26 |
jsonl_serializer = JsonlSerializer()
|
27 |
|
28 |
-
converter = JsonToJsonlConverter(
|
29 |
-
file_reader, writer, json_parser, jsonl_serializer
|
30 |
-
)
|
31 |
|
32 |
converter.convert(input, output)
|
33 |
|
|
|
6 |
from typing import Optional
|
7 |
|
8 |
# add src to the pythonpath so we don't need to pip install this
|
9 |
+
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
10 |
+
src_dir = os.path.join(project_root, "src")
|
11 |
sys.path.insert(0, src_dir)
|
12 |
|
13 |
from axolotl.convert import *
|
14 |
|
15 |
+
|
16 |
def main(
|
17 |
input: Path,
|
18 |
output: Optional[Path] = None,
|
|
|
26 |
json_parser = JsonParser()
|
27 |
jsonl_serializer = JsonlSerializer()
|
28 |
|
29 |
+
converter = JsonToJsonlConverter(file_reader, writer, json_parser, jsonl_serializer)
|
|
|
|
|
30 |
|
31 |
converter.convert(input, output)
|
32 |
|
scripts/finetune.py
CHANGED
@@ -14,7 +14,8 @@ from datasets import load_dataset, IterableDataset, Dataset
|
|
14 |
from peft import (
|
15 |
LoraConfig,
|
16 |
get_peft_model,
|
17 |
-
prepare_model_for_int8_training,
|
|
|
18 |
)
|
19 |
from torch import nn
|
20 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
@@ -22,15 +23,20 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
22 |
# add src to the pythonpath so we don't need to pip install this
|
23 |
from transformers.trainer_pt_utils import get_parameter_names
|
24 |
|
25 |
-
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__),
|
26 |
-
src_dir = os.path.join(project_root,
|
27 |
sys.path.insert(0, src_dir)
|
28 |
|
29 |
from axolotl.datasets import TokenizedPromptDataset, ConstantLengthDataset
|
30 |
-
from axolotl.prompt_tokenizers import
|
31 |
-
|
|
|
|
|
|
|
|
|
32 |
from axolotl.prompters import AlpacaPrompter, GPTeacherPrompter, ShareGPTPrompter
|
33 |
|
|
|
34 |
def setup_wandb_env_vars(cfg):
|
35 |
if len(cfg.wandb_project) > 0:
|
36 |
os.environ["WANDB_PROJECT"] = cfg.wandb_project
|
@@ -68,7 +74,7 @@ def load_model(base_model, model_type, tokenizer_type, cfg, adapter="lora"):
|
|
68 |
tokenizer.pad_token = LLAMA_DEFAULT_PAD_TOKEN
|
69 |
|
70 |
if tokenizer.__class__.__name__ == "GPTNeoXTokenizerFast":
|
71 |
-
tokenizer.add_special_tokens({
|
72 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
73 |
|
74 |
if cfg.load_in_8bit:
|
@@ -94,11 +100,11 @@ def load_model(base_model, model_type, tokenizer_type, cfg, adapter="lora"):
|
|
94 |
|
95 |
|
96 |
def train(
|
97 |
-
config: Path = Path(
|
98 |
**kwargs,
|
99 |
):
|
100 |
# load the config from the yaml file
|
101 |
-
with open(config,
|
102 |
cfg: AttrDict = AttrDict(yaml.load(f, Loader=yaml.Loader))
|
103 |
# if there are any options passed in the cli, if it is something that seems valid from the yaml,
|
104 |
# then overwrite the value
|
@@ -114,36 +120,52 @@ def train(
|
|
114 |
cfg.ddp = cfg.world_size != 1
|
115 |
if cfg.ddp:
|
116 |
cfg.device_map = {"": int(os.environ.get("LOCAL_RANK", 0))}
|
117 |
-
cfg.gradient_accumulation_steps =
|
|
|
|
|
118 |
setup_wandb_env_vars(cfg)
|
119 |
|
120 |
# Load the model and tokenizer
|
121 |
-
model, tokenizer, lora_config = load_model(
|
|
|
|
|
122 |
datasets = []
|
123 |
for d in cfg.datasets:
|
124 |
-
ds: IterableDataset = load_dataset(
|
|
|
|
|
125 |
if d.type == "alpaca":
|
126 |
-
ds_strategy = AlpacaPromptTokenizingStrategy(
|
|
|
|
|
127 |
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
|
128 |
datasets.append(ds_wrapper)
|
129 |
elif d.type == "gpteacher":
|
130 |
-
ds_strategy = GPTeacherPromptTokenizingStrategy(
|
|
|
|
|
131 |
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
|
132 |
datasets.append(ds_wrapper)
|
133 |
elif d.type == "sharegpt":
|
134 |
-
ds_strategy = ShareGPTPromptTokenizingStrategy(
|
|
|
|
|
135 |
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
|
136 |
datasets.append(ds_wrapper)
|
137 |
-
constant_len_dataset = ConstantLengthDataset(
|
138 |
-
|
139 |
-
test_size=cfg.val_set_size, shuffle=True, seed=42
|
140 |
)
|
|
|
|
|
|
|
141 |
|
142 |
print(constant_len_dataset)
|
143 |
train_dataset = constant_len_dataset["train"]
|
144 |
eval_dataset = constant_len_dataset["test"]
|
145 |
|
146 |
-
total_num_steps = int(
|
|
|
|
|
147 |
warmup_steps = min(int(0.03 * total_num_steps), 100)
|
148 |
logging_steps = min(int(0.005 * total_num_steps), 10)
|
149 |
save_steps = eval_steps = min(int(0.05 * total_num_steps), 200)
|
@@ -178,7 +200,9 @@ def train(
|
|
178 |
"weight_decay": training_args.weight_decay,
|
179 |
},
|
180 |
{
|
181 |
-
"params": [
|
|
|
|
|
182 |
"weight_decay": 0.0,
|
183 |
},
|
184 |
]
|
@@ -210,18 +234,16 @@ def train(
|
|
210 |
|
211 |
old_state_dict = model.state_dict
|
212 |
model.state_dict = (
|
213 |
-
lambda self, *_, **__: get_peft_model_state_dict(
|
214 |
-
self, old_state_dict()
|
215 |
-
)
|
216 |
).__get__(model, type(model))
|
217 |
|
218 |
if torch.__version__ >= "2" and sys.platform != "win32":
|
219 |
model = torch.compile(model)
|
220 |
|
221 |
-
signal.signal(
|
222 |
-
|
223 |
-
exit(0)
|
224 |
-
)
|
225 |
|
226 |
# go ahead and presave the adapter config
|
227 |
lora_config.save_pretrained(cfg.output_dir)
|
@@ -229,5 +251,6 @@ def train(
|
|
229 |
|
230 |
model.save_pretrained(cfg.output_dir)
|
231 |
|
|
|
232 |
if __name__ == "__main__":
|
233 |
fire.Fire(train)
|
|
|
14 |
from peft import (
|
15 |
LoraConfig,
|
16 |
get_peft_model,
|
17 |
+
prepare_model_for_int8_training,
|
18 |
+
get_peft_model_state_dict,
|
19 |
)
|
20 |
from torch import nn
|
21 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
23 |
# add src to the pythonpath so we don't need to pip install this
|
24 |
from transformers.trainer_pt_utils import get_parameter_names
|
25 |
|
26 |
+
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
27 |
+
src_dir = os.path.join(project_root, "src")
|
28 |
sys.path.insert(0, src_dir)
|
29 |
|
30 |
from axolotl.datasets import TokenizedPromptDataset, ConstantLengthDataset
|
31 |
+
from axolotl.prompt_tokenizers import (
|
32 |
+
AlpacaPromptTokenizingStrategy,
|
33 |
+
ShareGPTPromptTokenizingStrategy,
|
34 |
+
LLAMA_DEFAULT_PAD_TOKEN,
|
35 |
+
GPTeacherPromptTokenizingStrategy,
|
36 |
+
)
|
37 |
from axolotl.prompters import AlpacaPrompter, GPTeacherPrompter, ShareGPTPrompter
|
38 |
|
39 |
+
|
40 |
def setup_wandb_env_vars(cfg):
|
41 |
if len(cfg.wandb_project) > 0:
|
42 |
os.environ["WANDB_PROJECT"] = cfg.wandb_project
|
|
|
74 |
tokenizer.pad_token = LLAMA_DEFAULT_PAD_TOKEN
|
75 |
|
76 |
if tokenizer.__class__.__name__ == "GPTNeoXTokenizerFast":
|
77 |
+
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
78 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
79 |
|
80 |
if cfg.load_in_8bit:
|
|
|
100 |
|
101 |
|
102 |
def train(
|
103 |
+
config: Path = Path("configs/pythia_1_2B_alpaca.yml"),
|
104 |
**kwargs,
|
105 |
):
|
106 |
# load the config from the yaml file
|
107 |
+
with open(config, "r") as f:
|
108 |
cfg: AttrDict = AttrDict(yaml.load(f, Loader=yaml.Loader))
|
109 |
# if there are any options passed in the cli, if it is something that seems valid from the yaml,
|
110 |
# then overwrite the value
|
|
|
120 |
cfg.ddp = cfg.world_size != 1
|
121 |
if cfg.ddp:
|
122 |
cfg.device_map = {"": int(os.environ.get("LOCAL_RANK", 0))}
|
123 |
+
cfg.gradient_accumulation_steps = (
|
124 |
+
cfg.gradient_accumulation_steps // cfg.world_size
|
125 |
+
)
|
126 |
setup_wandb_env_vars(cfg)
|
127 |
|
128 |
# Load the model and tokenizer
|
129 |
+
model, tokenizer, lora_config = load_model(
|
130 |
+
cfg.base_model, cfg.model_type, cfg.tokenizer_type, cfg, adapter=cfg.adapter
|
131 |
+
)
|
132 |
datasets = []
|
133 |
for d in cfg.datasets:
|
134 |
+
ds: IterableDataset = load_dataset(
|
135 |
+
"json", data_files=d.path, streaming=True, split=None
|
136 |
+
)
|
137 |
if d.type == "alpaca":
|
138 |
+
ds_strategy = AlpacaPromptTokenizingStrategy(
|
139 |
+
AlpacaPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len
|
140 |
+
)
|
141 |
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
|
142 |
datasets.append(ds_wrapper)
|
143 |
elif d.type == "gpteacher":
|
144 |
+
ds_strategy = GPTeacherPromptTokenizingStrategy(
|
145 |
+
GPTeacherPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len
|
146 |
+
)
|
147 |
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
|
148 |
datasets.append(ds_wrapper)
|
149 |
elif d.type == "sharegpt":
|
150 |
+
ds_strategy = ShareGPTPromptTokenizingStrategy(
|
151 |
+
ShareGPTPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len
|
152 |
+
)
|
153 |
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
|
154 |
datasets.append(ds_wrapper)
|
155 |
+
constant_len_dataset = ConstantLengthDataset(
|
156 |
+
tokenizer, datasets, seq_length=cfg.sequence_len
|
|
|
157 |
)
|
158 |
+
constant_len_dataset = Dataset.from_list(
|
159 |
+
[_ for _ in constant_len_dataset]
|
160 |
+
).train_test_split(test_size=cfg.val_set_size, shuffle=True, seed=42)
|
161 |
|
162 |
print(constant_len_dataset)
|
163 |
train_dataset = constant_len_dataset["train"]
|
164 |
eval_dataset = constant_len_dataset["test"]
|
165 |
|
166 |
+
total_num_steps = int(
|
167 |
+
math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size)
|
168 |
+
)
|
169 |
warmup_steps = min(int(0.03 * total_num_steps), 100)
|
170 |
logging_steps = min(int(0.005 * total_num_steps), 10)
|
171 |
save_steps = eval_steps = min(int(0.05 * total_num_steps), 200)
|
|
|
200 |
"weight_decay": training_args.weight_decay,
|
201 |
},
|
202 |
{
|
203 |
+
"params": [
|
204 |
+
p for n, p in model.named_parameters() if n not in decay_parameters
|
205 |
+
],
|
206 |
"weight_decay": 0.0,
|
207 |
},
|
208 |
]
|
|
|
234 |
|
235 |
old_state_dict = model.state_dict
|
236 |
model.state_dict = (
|
237 |
+
lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
|
|
|
|
|
238 |
).__get__(model, type(model))
|
239 |
|
240 |
if torch.__version__ >= "2" and sys.platform != "win32":
|
241 |
model = torch.compile(model)
|
242 |
|
243 |
+
signal.signal(
|
244 |
+
signal.SIGINT,
|
245 |
+
lambda signal, frame: (model.save_pretrained(cfg.output_dir), exit(0)),
|
246 |
+
)
|
247 |
|
248 |
# go ahead and presave the adapter config
|
249 |
lora_config.save_pretrained(cfg.output_dir)
|
|
|
251 |
|
252 |
model.save_pretrained(cfg.output_dir)
|
253 |
|
254 |
+
|
255 |
if __name__ == "__main__":
|
256 |
fire.Fire(train)
|
src/axolotl/convert.py
CHANGED
@@ -47,5 +47,3 @@ class JsonToJsonlConverter:
|
|
47 |
# data = [r for r in data if r["conversations"]] # vicuna cleaned has rows with empty conversations
|
48 |
jsonl_content = self.jsonl_serializer.serialize(data)
|
49 |
self.file_writer.write(jsonl_content)
|
50 |
-
|
51 |
-
|
|
|
47 |
# data = [r for r in data if r["conversations"]] # vicuna cleaned has rows with empty conversations
|
48 |
jsonl_content = self.jsonl_serializer.serialize(data)
|
49 |
self.file_writer.write(jsonl_content)
|
|
|
|
src/axolotl/datasets.py
CHANGED
@@ -71,10 +71,18 @@ class ConstantLengthDataset(IterableDataset):
|
|
71 |
else:
|
72 |
example_len = 0
|
73 |
|
74 |
-
if
|
|
|
|
|
|
|
|
|
75 |
if buffer["input_ids"]:
|
76 |
-
input_ids = torch.cat(buffer["input_ids"], dim=-1)[
|
77 |
-
|
|
|
|
|
|
|
|
|
78 |
labels = torch.cat(buffer["labels"], dim=-1)[: self.seq_length]
|
79 |
yield {
|
80 |
"input_ids": input_ids,
|
@@ -95,7 +103,9 @@ class ConstantLengthDataset(IterableDataset):
|
|
95 |
labels.append(self.concat_token_id)
|
96 |
|
97 |
input_ids_with_concat = torch.tensor(input_ids, dtype=torch.long)
|
98 |
-
attention_mask_with_concat = torch.tensor(
|
|
|
|
|
99 |
labels_with_concat = torch.tensor(labels, dtype=torch.long)
|
100 |
|
101 |
buffer["input_ids"].append(input_ids_with_concat)
|
|
|
71 |
else:
|
72 |
example_len = 0
|
73 |
|
74 |
+
if (
|
75 |
+
not example_len
|
76 |
+
or buffer_len + int(add_concat_token) + example_len
|
77 |
+
> self.seq_length
|
78 |
+
):
|
79 |
if buffer["input_ids"]:
|
80 |
+
input_ids = torch.cat(buffer["input_ids"], dim=-1)[
|
81 |
+
: self.seq_length
|
82 |
+
]
|
83 |
+
attention_mask = torch.cat(buffer["attention_mask"], dim=-1)[
|
84 |
+
: self.seq_length
|
85 |
+
]
|
86 |
labels = torch.cat(buffer["labels"], dim=-1)[: self.seq_length]
|
87 |
yield {
|
88 |
"input_ids": input_ids,
|
|
|
103 |
labels.append(self.concat_token_id)
|
104 |
|
105 |
input_ids_with_concat = torch.tensor(input_ids, dtype=torch.long)
|
106 |
+
attention_mask_with_concat = torch.tensor(
|
107 |
+
attention_mask, dtype=torch.long
|
108 |
+
)
|
109 |
labels_with_concat = torch.tensor(labels, dtype=torch.long)
|
110 |
|
111 |
buffer["input_ids"].append(input_ids_with_concat)
|
src/axolotl/prompt_tokenizers.py
CHANGED
@@ -42,7 +42,9 @@ class AlpacaPromptTokenizingStrategy(PromptTokenizingStrategy):
|
|
42 |
tokenized_user_prompt = self._tokenize(user_prompt, add_eos_token=False)
|
43 |
user_prompt_len = len(tokenized_user_prompt["input_ids"])
|
44 |
# TODO this could be sped up using numpy array slicing
|
45 |
-
tokenized_full_prompt["labels"] = [
|
|
|
|
|
46 |
|
47 |
return tokenized_full_prompt
|
48 |
|
|
|
42 |
tokenized_user_prompt = self._tokenize(user_prompt, add_eos_token=False)
|
43 |
user_prompt_len = len(tokenized_user_prompt["input_ids"])
|
44 |
# TODO this could be sped up using numpy array slicing
|
45 |
+
tokenized_full_prompt["labels"] = [
|
46 |
+
-100
|
47 |
+
] * user_prompt_len + tokenized_full_prompt["labels"][user_prompt_len:]
|
48 |
|
49 |
return tokenized_full_prompt
|
50 |
|
src/axolotl/prompters.py
CHANGED
@@ -20,13 +20,9 @@ class AlpacaPrompter:
|
|
20 |
# returns the full prompt from instruction and optional input
|
21 |
# if a label (=response, =output) is provided, it's also appended.
|
22 |
if input:
|
23 |
-
res = self.prompt_input.format(
|
24 |
-
instruction=instruction, input=input
|
25 |
-
)
|
26 |
else:
|
27 |
-
res = self.prompt_no_input.format(
|
28 |
-
instruction=instruction
|
29 |
-
)
|
30 |
if output:
|
31 |
res = f"{res}{output}"
|
32 |
return res
|
@@ -41,6 +37,7 @@ class GPTeacherPrompter(AlpacaPrompter):
|
|
41 |
|
42 |
class SeparatorStyle(Enum):
|
43 |
"""Different separator style."""
|
|
|
44 |
SINGLE = auto()
|
45 |
TWO = auto()
|
46 |
DOLLY = auto()
|
@@ -50,6 +47,7 @@ class SeparatorStyle(Enum):
|
|
50 |
@dataclasses.dataclass
|
51 |
class Conversation:
|
52 |
"""A class that keeps all conversation history."""
|
|
|
53 |
system: str
|
54 |
roles: List[str]
|
55 |
messages: List[List[str]]
|
@@ -85,7 +83,7 @@ class Conversation:
|
|
85 |
|
86 |
conv_vicuna_v1_1 = Conversation(
|
87 |
system="A chat between a curious user and an artificial intelligence assistant. "
|
88 |
-
|
89 |
roles=["USER", "ASSISTANT"],
|
90 |
messages=[],
|
91 |
offset=0,
|
@@ -96,11 +94,7 @@ conv_vicuna_v1_1 = Conversation(
|
|
96 |
|
97 |
|
98 |
class ShareGPTPrompter:
|
99 |
-
def build_prompt(
|
100 |
-
self,
|
101 |
-
source,
|
102 |
-
tokenizer
|
103 |
-
):
|
104 |
if len(source) < 2:
|
105 |
# If there isn't a back and forth conversation, ignore it
|
106 |
# also happens on the data splitting leaving empty conversations
|
@@ -111,7 +105,10 @@ class ShareGPTPrompter:
|
|
111 |
|
112 |
try:
|
113 |
# Apply prompt templates
|
114 |
-
if
|
|
|
|
|
|
|
115 |
# Skip the first one if it is not from human
|
116 |
source = source[1:]
|
117 |
except IndexError as e:
|
@@ -150,11 +147,19 @@ class ShareGPTPrompter:
|
|
150 |
parts[0] += sep
|
151 |
round_len = len(tokenizer(rou)["input_ids"])
|
152 |
instruction_len = len(tokenizer(parts[0])["input_ids"]) - 2
|
153 |
-
target[cur_len:cur_len+instruction_len] = [
|
|
|
|
|
154 |
|
155 |
cur_len += round_len
|
156 |
target[cur_len:] = [IGNORE_TOKEN_ID] * (len(target) - cur_len)
|
157 |
-
attention_mask = [
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
# returns the full prompt from instruction and optional input
|
21 |
# if a label (=response, =output) is provided, it's also appended.
|
22 |
if input:
|
23 |
+
res = self.prompt_input.format(instruction=instruction, input=input)
|
|
|
|
|
24 |
else:
|
25 |
+
res = self.prompt_no_input.format(instruction=instruction)
|
|
|
|
|
26 |
if output:
|
27 |
res = f"{res}{output}"
|
28 |
return res
|
|
|
37 |
|
38 |
class SeparatorStyle(Enum):
|
39 |
"""Different separator style."""
|
40 |
+
|
41 |
SINGLE = auto()
|
42 |
TWO = auto()
|
43 |
DOLLY = auto()
|
|
|
47 |
@dataclasses.dataclass
|
48 |
class Conversation:
|
49 |
"""A class that keeps all conversation history."""
|
50 |
+
|
51 |
system: str
|
52 |
roles: List[str]
|
53 |
messages: List[List[str]]
|
|
|
83 |
|
84 |
conv_vicuna_v1_1 = Conversation(
|
85 |
system="A chat between a curious user and an artificial intelligence assistant. "
|
86 |
+
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
|
87 |
roles=["USER", "ASSISTANT"],
|
88 |
messages=[],
|
89 |
offset=0,
|
|
|
94 |
|
95 |
|
96 |
class ShareGPTPrompter:
|
97 |
+
def build_prompt(self, source, tokenizer):
|
|
|
|
|
|
|
|
|
98 |
if len(source) < 2:
|
99 |
# If there isn't a back and forth conversation, ignore it
|
100 |
# also happens on the data splitting leaving empty conversations
|
|
|
105 |
|
106 |
try:
|
107 |
# Apply prompt templates
|
108 |
+
if (
|
109 |
+
source[0]["from"] not in roles
|
110 |
+
or roles[source[0]["from"]] != conv.roles[0]
|
111 |
+
):
|
112 |
# Skip the first one if it is not from human
|
113 |
source = source[1:]
|
114 |
except IndexError as e:
|
|
|
147 |
parts[0] += sep
|
148 |
round_len = len(tokenizer(rou)["input_ids"])
|
149 |
instruction_len = len(tokenizer(parts[0])["input_ids"]) - 2
|
150 |
+
target[cur_len : cur_len + instruction_len] = [
|
151 |
+
IGNORE_TOKEN_ID
|
152 |
+
] * instruction_len
|
153 |
|
154 |
cur_len += round_len
|
155 |
target[cur_len:] = [IGNORE_TOKEN_ID] * (len(target) - cur_len)
|
156 |
+
attention_mask = [
|
157 |
+
1 if x != tokenizer.pad_token_id else 0
|
158 |
+
for x in tokenized_result["input_ids"]
|
159 |
+
]
|
160 |
+
|
161 |
+
return dict(
|
162 |
+
input_ids=tokenized_result["input_ids"],
|
163 |
+
labels=target,
|
164 |
+
attention_mask=attention_mask,
|
165 |
+
)
|