winglian commited on
Commit
b3a61e8
1 Parent(s): 8a8d1c4

add e2e tests for checking functionality of resume from checkpoint (#865)

Browse files

* use tensorboard to see if resume from checkpoint works

* make sure e2e test is either fp16 or bf16

* set max_steps and save limit so we have the checkpoint when testing resuming

* fix test parameters

requirements.txt CHANGED
@@ -32,3 +32,4 @@ pynvml
32
  art
33
  fschat==0.2.29
34
  gradio
 
 
32
  art
33
  fschat==0.2.29
34
  gradio
35
+ tensorboard
tests/e2e/test_lora_llama.py CHANGED
@@ -101,6 +101,7 @@ class TestLoraLlama(unittest.TestCase):
101
  "learning_rate": 0.00001,
102
  "optimizer": "adamw_torch",
103
  "lr_scheduler": "cosine",
 
104
  }
105
  )
106
  normalize_config(cfg)
 
101
  "learning_rate": 0.00001,
102
  "optimizer": "adamw_torch",
103
  "lr_scheduler": "cosine",
104
+ "bf16": True,
105
  }
106
  )
107
  normalize_config(cfg)
tests/e2e/test_resume.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ E2E tests for resuming training
3
+ """
4
+
5
+ import logging
6
+ import os
7
+ import re
8
+ import subprocess
9
+ import unittest
10
+ from pathlib import Path
11
+
12
+ from transformers.utils import is_torch_bf16_gpu_available
13
+
14
+ from axolotl.cli import load_datasets
15
+ from axolotl.common.cli import TrainerCliArgs
16
+ from axolotl.train import train
17
+ from axolotl.utils.config import normalize_config
18
+ from axolotl.utils.dict import DictDefault
19
+
20
+ from .utils import most_recent_subdir, with_temp_dir
21
+
22
+ LOG = logging.getLogger("axolotl.tests.e2e")
23
+ os.environ["WANDB_DISABLED"] = "true"
24
+
25
+
26
+ class TestResumeLlama(unittest.TestCase):
27
+ """
28
+ Test case for resuming training of llama models
29
+ """
30
+
31
+ @with_temp_dir
32
+ def test_resume_qlora(self, temp_dir):
33
+ # pylint: disable=duplicate-code
34
+ cfg = DictDefault(
35
+ {
36
+ "base_model": "JackFram/llama-68m",
37
+ "tokenizer_type": "LlamaTokenizer",
38
+ "sequence_len": 1024,
39
+ "sample_packing": True,
40
+ "flash_attention": True,
41
+ "load_in_4bit": True,
42
+ "adapter": "qlora",
43
+ "lora_r": 32,
44
+ "lora_alpha": 64,
45
+ "lora_dropout": 0.05,
46
+ "lora_target_linear": True,
47
+ "val_set_size": 0.1,
48
+ "special_tokens": {},
49
+ "datasets": [
50
+ {
51
+ "path": "vicgalle/alpaca-gpt4",
52
+ "type": "alpaca",
53
+ },
54
+ ],
55
+ "num_epochs": 2,
56
+ "micro_batch_size": 1,
57
+ "gradient_accumulation_steps": 1,
58
+ "output_dir": temp_dir,
59
+ "learning_rate": 0.00001,
60
+ "optimizer": "adamw_torch",
61
+ "lr_scheduler": "cosine",
62
+ "save_steps": 10,
63
+ "save_total_limit": 5,
64
+ "max_steps": 40,
65
+ }
66
+ )
67
+ if is_torch_bf16_gpu_available():
68
+ cfg.bf16 = True
69
+ else:
70
+ cfg.fp16 = True
71
+ normalize_config(cfg)
72
+ cli_args = TrainerCliArgs()
73
+ dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
74
+
75
+ train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
76
+
77
+ resume_cfg = cfg | DictDefault(
78
+ {
79
+ "resume_from_checkpoint": f"{temp_dir}/checkpoint-30/",
80
+ }
81
+ )
82
+ normalize_config(resume_cfg)
83
+ cli_args = TrainerCliArgs()
84
+
85
+ train(cfg=resume_cfg, cli_args=cli_args, dataset_meta=dataset_meta)
86
+ assert (Path(temp_dir) / "adapter_model.bin").exists()
87
+
88
+ tb_log_path_1 = most_recent_subdir(temp_dir + "/runs")
89
+ cmd = f"tensorboard --inspect --logdir {tb_log_path_1}"
90
+ res = subprocess.run(
91
+ cmd, shell=True, text=True, capture_output=True, check=True
92
+ )
93
+ pattern = r"first_step\s+(\d+)"
94
+ first_steps = int(re.findall(pattern, res.stdout)[0])
95
+ assert first_steps == 31
tests/e2e/utils.py CHANGED
@@ -1,10 +1,11 @@
1
  """
2
  helper utils for tests
3
  """
4
-
5
  import shutil
6
  import tempfile
7
  from functools import wraps
 
8
 
9
 
10
  def with_temp_dir(test_func):
@@ -20,3 +21,13 @@ def with_temp_dir(test_func):
20
  shutil.rmtree(temp_dir)
21
 
22
  return wrapper
 
 
 
 
 
 
 
 
 
 
 
1
  """
2
  helper utils for tests
3
  """
4
+ import os
5
  import shutil
6
  import tempfile
7
  from functools import wraps
8
+ from pathlib import Path
9
 
10
 
11
  def with_temp_dir(test_func):
 
21
  shutil.rmtree(temp_dir)
22
 
23
  return wrapper
24
+
25
+
26
+ def most_recent_subdir(path):
27
+ base_path = Path(path)
28
+ subdirectories = [d for d in base_path.iterdir() if d.is_dir()]
29
+ if not subdirectories:
30
+ return None
31
+ subdir = max(subdirectories, key=os.path.getctime)
32
+
33
+ return subdir