more qlora support
Browse files- src/axolotl/prompters.py +5 -0
- src/axolotl/utils/data.py +5 -0
- src/axolotl/utils/models.py +3 -0
src/axolotl/prompters.py
CHANGED
@@ -11,6 +11,7 @@ class PromptStyle(Enum):
|
|
11 |
instruct = "instruct"
|
12 |
chat = "chat"
|
13 |
|
|
|
14 |
class AlpacaPrompter:
|
15 |
system_prompt = "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n"
|
16 |
system_no_input_prompt = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n"
|
@@ -50,6 +51,10 @@ class AlpacaPrompter:
|
|
50 |
return output.split(self.response_split)[1].strip()
|
51 |
|
52 |
|
|
|
|
|
|
|
|
|
53 |
class JeopardyPrompter(AlpacaPrompter):
|
54 |
prompt_input = "Below is a Jeopardy clue paired with input providing the category of the clue. Write a concise response that best answers tbe clue given the category.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
|
55 |
|
|
|
11 |
instruct = "instruct"
|
12 |
chat = "chat"
|
13 |
|
14 |
+
|
15 |
class AlpacaPrompter:
|
16 |
system_prompt = "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n"
|
17 |
system_no_input_prompt = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n"
|
|
|
51 |
return output.split(self.response_split)[1].strip()
|
52 |
|
53 |
|
54 |
+
class UnpromptedPrompter(AlpacaPrompter):
|
55 |
+
system_prompt = ""
|
56 |
+
system_no_input_prompt = ""
|
57 |
+
|
58 |
class JeopardyPrompter(AlpacaPrompter):
|
59 |
prompt_input = "Below is a Jeopardy clue paired with input providing the category of the clue. Write a concise response that best answers tbe clue given the category.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
|
60 |
|
src/axolotl/utils/data.py
CHANGED
@@ -98,6 +98,11 @@ def load_tokenized_prepared_datasets(tokenizer, cfg, default_dataset_prepared_pa
|
|
98 |
ds = load_dataset("json", data_files=fp, streaming=False, split=None)
|
99 |
if not ds:
|
100 |
raise Exception("unhandled dataset load")
|
|
|
|
|
|
|
|
|
|
|
101 |
d_type = d.type
|
102 |
d_type_split = d_type.split(":")
|
103 |
d_base_type = d_type_split[0]
|
|
|
98 |
ds = load_dataset("json", data_files=fp, streaming=False, split=None)
|
99 |
if not ds:
|
100 |
raise Exception("unhandled dataset load")
|
101 |
+
# support for using a subset of the data
|
102 |
+
if d.shards:
|
103 |
+
ds = ds.shuffle(seed=42)["train"].shard(
|
104 |
+
num_shards=cfg.shards, index=0
|
105 |
+
)
|
106 |
d_type = d.type
|
107 |
d_type_split = d_type.split(":")
|
108 |
d_base_type = d_type_split[0]
|
src/axolotl/utils/models.py
CHANGED
@@ -134,6 +134,7 @@ def load_model(
|
|
134 |
model = LlamaForCausalLM.from_pretrained(
|
135 |
base_model,
|
136 |
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
|
|
|
137 |
torch_dtype=torch_dtype,
|
138 |
device_map=cfg.device_map,
|
139 |
**model_kwargs,
|
@@ -168,6 +169,7 @@ def load_model(
|
|
168 |
model = getattr(transformers, model_type).from_pretrained(
|
169 |
base_model,
|
170 |
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
|
|
|
171 |
torch_dtype=torch_dtype,
|
172 |
device_map=cfg.device_map,
|
173 |
trust_remote_code=True if cfg.trust_remote_code is True else False,
|
@@ -182,6 +184,7 @@ def load_model(
|
|
182 |
base_model,
|
183 |
config=config,
|
184 |
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
|
|
|
185 |
torch_dtype=torch_dtype,
|
186 |
device_map=cfg.device_map,
|
187 |
trust_remote_code=True if cfg.trust_remote_code is True else False,
|
|
|
134 |
model = LlamaForCausalLM.from_pretrained(
|
135 |
base_model,
|
136 |
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
|
137 |
+
load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
|
138 |
torch_dtype=torch_dtype,
|
139 |
device_map=cfg.device_map,
|
140 |
**model_kwargs,
|
|
|
169 |
model = getattr(transformers, model_type).from_pretrained(
|
170 |
base_model,
|
171 |
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
|
172 |
+
load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
|
173 |
torch_dtype=torch_dtype,
|
174 |
device_map=cfg.device_map,
|
175 |
trust_remote_code=True if cfg.trust_remote_code is True else False,
|
|
|
184 |
base_model,
|
185 |
config=config,
|
186 |
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
|
187 |
+
load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
|
188 |
torch_dtype=torch_dtype,
|
189 |
device_map=cfg.device_map,
|
190 |
trust_remote_code=True if cfg.trust_remote_code is True else False,
|