Fix mypy typing
Browse files- scripts/alpaca_json_to_jsonl.py +2 -1
- scripts/extract_lora.py +163 -0
- src/axolotl/prompt_strategies/pygmalion.py +3 -3
- src/axolotl/prompt_tokenizers.py +4 -8
- src/axolotl/prompters.py +7 -7
- src/axolotl/utils/data.py +8 -12
- src/axolotl/utils/models.py +1 -1
- src/axolotl/utils/trainer.py +2 -1
scripts/alpaca_json_to_jsonl.py
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
import os
|
4 |
import sys
|
5 |
|
6 |
-
from typing import Optional
|
7 |
from pathlib import Path
|
8 |
|
9 |
import fire
|
@@ -35,6 +35,7 @@ def main(
|
|
35 |
"""
|
36 |
|
37 |
file_reader = FileReader()
|
|
|
38 |
if to_stdout or output is None:
|
39 |
writer = StdoutWriter()
|
40 |
else:
|
|
|
3 |
import os
|
4 |
import sys
|
5 |
|
6 |
+
from typing import Optional, Union
|
7 |
from pathlib import Path
|
8 |
|
9 |
import fire
|
|
|
35 |
"""
|
36 |
|
37 |
file_reader = FileReader()
|
38 |
+
writer: Union[StdoutWriter, FileWriter]
|
39 |
if to_stdout or output is None:
|
40 |
writer = StdoutWriter()
|
41 |
else:
|
scripts/extract_lora.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import logging
|
2 |
+
# import os
|
3 |
+
# import random
|
4 |
+
# import signal
|
5 |
+
# import sys
|
6 |
+
# from pathlib import Path
|
7 |
+
|
8 |
+
# import fire
|
9 |
+
# import torch
|
10 |
+
# import yaml
|
11 |
+
# from addict import Dict
|
12 |
+
|
13 |
+
# from peft import set_peft_model_state_dict, get_peft_model_state_dict
|
14 |
+
|
15 |
+
# # add src to the pythonpath so we don't need to pip install this
|
16 |
+
# project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
17 |
+
# src_dir = os.path.join(project_root, "src")
|
18 |
+
# sys.path.insert(0, src_dir)
|
19 |
+
|
20 |
+
# from axolotl.utils.data import load_prepare_datasets
|
21 |
+
# from axolotl.utils.models import load_model
|
22 |
+
# from axolotl.utils.trainer import setup_trainer
|
23 |
+
# from axolotl.utils.wandb import setup_wandb_env_vars
|
24 |
+
|
25 |
+
# logging.basicConfig(level=os.getenv("LOG_LEVEL", "INFO"))
|
26 |
+
|
27 |
+
|
28 |
+
# def choose_device(cfg):
|
29 |
+
# def get_device():
|
30 |
+
# if torch.cuda.is_available():
|
31 |
+
# return "cuda"
|
32 |
+
# else:
|
33 |
+
# try:
|
34 |
+
# if torch.backends.mps.is_available():
|
35 |
+
# return "mps"
|
36 |
+
# except:
|
37 |
+
# return "cpu"
|
38 |
+
|
39 |
+
# cfg.device = get_device()
|
40 |
+
# if cfg.device == "cuda":
|
41 |
+
# cfg.device_map = {"": cfg.local_rank}
|
42 |
+
# else:
|
43 |
+
# cfg.device_map = {"": cfg.device}
|
44 |
+
|
45 |
+
|
46 |
+
# def choose_config(path: Path):
|
47 |
+
# yaml_files = [file for file in path.glob("*.yml")]
|
48 |
+
|
49 |
+
# if not yaml_files:
|
50 |
+
# raise ValueError(
|
51 |
+
# "No YAML config files found in the specified directory. Are you using a .yml extension?"
|
52 |
+
# )
|
53 |
+
|
54 |
+
# print("Choose a YAML file:")
|
55 |
+
# for idx, file in enumerate(yaml_files):
|
56 |
+
# print(f"{idx + 1}. {file}")
|
57 |
+
|
58 |
+
# chosen_file = None
|
59 |
+
# while chosen_file is None:
|
60 |
+
# try:
|
61 |
+
# choice = int(input("Enter the number of your choice: "))
|
62 |
+
# if 1 <= choice <= len(yaml_files):
|
63 |
+
# chosen_file = yaml_files[choice - 1]
|
64 |
+
# else:
|
65 |
+
# print("Invalid choice. Please choose a number from the list.")
|
66 |
+
# except ValueError:
|
67 |
+
# print("Invalid input. Please enter a number.")
|
68 |
+
|
69 |
+
# return chosen_file
|
70 |
+
|
71 |
+
|
72 |
+
# def save_latest_checkpoint_as_lora(
|
73 |
+
# config: Path = Path("configs/"),
|
74 |
+
# prepare_ds_only: bool = False,
|
75 |
+
# **kwargs,
|
76 |
+
# ):
|
77 |
+
# if Path(config).is_dir():
|
78 |
+
# config = choose_config(config)
|
79 |
+
|
80 |
+
# # load the config from the yaml file
|
81 |
+
# with open(config, "r") as f:
|
82 |
+
# cfg: Dict = Dict(lambda: None, yaml.load(f, Loader=yaml.Loader))
|
83 |
+
# # if there are any options passed in the cli, if it is something that seems valid from the yaml,
|
84 |
+
# # then overwrite the value
|
85 |
+
# cfg_keys = dict(cfg).keys()
|
86 |
+
# for k in kwargs:
|
87 |
+
# if k in cfg_keys:
|
88 |
+
# # handle booleans
|
89 |
+
# if isinstance(cfg[k], bool):
|
90 |
+
# cfg[k] = bool(kwargs[k])
|
91 |
+
# else:
|
92 |
+
# cfg[k] = kwargs[k]
|
93 |
+
|
94 |
+
# # setup some derived config / hyperparams
|
95 |
+
# cfg.gradient_accumulation_steps = cfg.batch_size // cfg.micro_batch_size
|
96 |
+
# cfg.world_size = int(os.environ.get("WORLD_SIZE", 1))
|
97 |
+
# cfg.local_rank = int(os.environ.get("LOCAL_RANK", 0))
|
98 |
+
# assert cfg.local_rank == 0, "Run this with only one device!"
|
99 |
+
|
100 |
+
# choose_device(cfg)
|
101 |
+
# cfg.ddp = False
|
102 |
+
|
103 |
+
# if cfg.device == "mps":
|
104 |
+
# cfg.load_in_8bit = False
|
105 |
+
# cfg.tf32 = False
|
106 |
+
# if cfg.bf16:
|
107 |
+
# cfg.fp16 = True
|
108 |
+
# cfg.bf16 = False
|
109 |
+
|
110 |
+
# # Load the model and tokenizer
|
111 |
+
# logging.info("loading model, tokenizer, and lora_config...")
|
112 |
+
# model, tokenizer, lora_config = load_model(
|
113 |
+
# cfg.base_model,
|
114 |
+
# cfg.base_model_config,
|
115 |
+
# cfg.model_type,
|
116 |
+
# cfg.tokenizer_type,
|
117 |
+
# cfg,
|
118 |
+
# adapter=cfg.adapter,
|
119 |
+
# inference=True,
|
120 |
+
# )
|
121 |
+
|
122 |
+
# model.config.use_cache = False
|
123 |
+
|
124 |
+
# if torch.__version__ >= "2" and sys.platform != "win32":
|
125 |
+
# logging.info("Compiling torch model")
|
126 |
+
# model = torch.compile(model)
|
127 |
+
|
128 |
+
# possible_checkpoints = [str(cp) for cp in Path(cfg.output_dir).glob("checkpoint-*")]
|
129 |
+
# if len(possible_checkpoints) > 0:
|
130 |
+
# sorted_paths = sorted(
|
131 |
+
# possible_checkpoints, key=lambda path: int(path.split("-")[-1])
|
132 |
+
# )
|
133 |
+
# resume_from_checkpoint = sorted_paths[-1]
|
134 |
+
# else:
|
135 |
+
# raise FileNotFoundError("Checkpoints folder not found")
|
136 |
+
|
137 |
+
# pytorch_bin_path = os.path.join(resume_from_checkpoint, "pytorch_model.bin")
|
138 |
+
|
139 |
+
# assert os.path.exists(pytorch_bin_path), "Bin not found"
|
140 |
+
|
141 |
+
# logging.info(f"Loading {pytorch_bin_path}")
|
142 |
+
# adapters_weights = torch.load(pytorch_bin_path, map_location="cpu")
|
143 |
+
|
144 |
+
# # d = get_peft_model_state_dict(model)
|
145 |
+
# print(model.load_state_dict(adapters_weights))
|
146 |
+
# # with open('b.log', "w") as f:
|
147 |
+
# # f.write(str(d.keys()))
|
148 |
+
# assert False
|
149 |
+
|
150 |
+
# print((adapters_weights.keys()))
|
151 |
+
# with open("a.log", "w") as f:
|
152 |
+
# f.write(str(adapters_weights.keys()))
|
153 |
+
# assert False
|
154 |
+
|
155 |
+
# logging.info("Setting peft model state dict")
|
156 |
+
# set_peft_model_state_dict(model, adapters_weights)
|
157 |
+
|
158 |
+
# logging.info(f"Set Completed!!! Saving pre-trained model to {cfg.output_dir}")
|
159 |
+
# model.save_pretrained(cfg.output_dir)
|
160 |
+
|
161 |
+
|
162 |
+
# if __name__ == "__main__":
|
163 |
+
# fire.Fire(save_latest_checkpoint_as_lora)
|
src/axolotl/prompt_strategies/pygmalion.py
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
import copy
|
4 |
import logging
|
5 |
from collections import defaultdict
|
6 |
-
from typing import Generator
|
7 |
|
8 |
from axolotl.prompt_tokenizers import (
|
9 |
PromptTokenizingStrategy,
|
@@ -19,7 +19,7 @@ class PygmalionPromptTokenizingStrategy(PromptTokenizingStrategy):
|
|
19 |
Tokenizing strategy for Pygmalion.
|
20 |
"""
|
21 |
|
22 |
-
bot_prefix_token_ids = []
|
23 |
|
24 |
def __init__(self, prompter, tokenizer, *args, **kwargs):
|
25 |
super().__init__(prompter, tokenizer, *args, **kwargs)
|
@@ -88,7 +88,7 @@ class PygmalionPrompter:
|
|
88 |
|
89 |
def build_prompt(
|
90 |
self, source, *args, **kwargs # pylint: disable=unused-argument
|
91 |
-
) -> Generator[str, None, None]:
|
92 |
for msg in source:
|
93 |
yield msg["role"], msg["value"]
|
94 |
|
|
|
3 |
import copy
|
4 |
import logging
|
5 |
from collections import defaultdict
|
6 |
+
from typing import Generator, List, Tuple
|
7 |
|
8 |
from axolotl.prompt_tokenizers import (
|
9 |
PromptTokenizingStrategy,
|
|
|
19 |
Tokenizing strategy for Pygmalion.
|
20 |
"""
|
21 |
|
22 |
+
bot_prefix_token_ids: List[int] = []
|
23 |
|
24 |
def __init__(self, prompter, tokenizer, *args, **kwargs):
|
25 |
super().__init__(prompter, tokenizer, *args, **kwargs)
|
|
|
88 |
|
89 |
def build_prompt(
|
90 |
self, source, *args, **kwargs # pylint: disable=unused-argument
|
91 |
+
) -> Generator[Tuple[str, str], None, None]:
|
92 |
for msg in source:
|
93 |
yield msg["role"], msg["value"]
|
94 |
|
src/axolotl/prompt_tokenizers.py
CHANGED
@@ -226,20 +226,16 @@ class CompletionPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
|
226 |
Tokenizing strategy for Completion prompts.
|
227 |
"""
|
228 |
|
229 |
-
def parse_instruction_fields(self, prompt) -> str:
|
230 |
-
return prompt["text"]
|
231 |
-
|
232 |
def tokenize_prompt(self, prompt):
|
233 |
-
|
234 |
-
full_prompt = self._build_full_prompt(instruction, None, None)
|
235 |
tokenized_full_prompt = self._tokenize(full_prompt)
|
236 |
|
237 |
return tokenized_full_prompt
|
238 |
|
239 |
def _build_full_prompt(
|
240 |
self, instruction, input, response
|
241 |
-
): # pylint: disable=
|
242 |
-
return next(iter(self.prompter.build_prompt(instruction)))
|
243 |
|
244 |
|
245 |
class ReflectionPromptTokenizingStrategy(PromptTokenizingStrategy):
|
@@ -419,7 +415,7 @@ def tokenize_prompt_default() -> Tuple[Dict[str, List[int]], int]:
|
|
419 |
Returns the default values for the tokenize prompt function
|
420 |
"""
|
421 |
|
422 |
-
result = {
|
423 |
"input_ids": [],
|
424 |
"attention_mask": [],
|
425 |
"labels": [],
|
|
|
226 |
Tokenizing strategy for Completion prompts.
|
227 |
"""
|
228 |
|
|
|
|
|
|
|
229 |
def tokenize_prompt(self, prompt):
|
230 |
+
full_prompt = self._build_full_prompt(prompt["text"], None, None)
|
|
|
231 |
tokenized_full_prompt = self._tokenize(full_prompt)
|
232 |
|
233 |
return tokenized_full_prompt
|
234 |
|
235 |
def _build_full_prompt(
|
236 |
self, instruction, input, response
|
237 |
+
): # pylint: disable=redefined-builtin
|
238 |
+
return next(iter(self.prompter.build_prompt(instruction, input, response)))
|
239 |
|
240 |
|
241 |
class ReflectionPromptTokenizingStrategy(PromptTokenizingStrategy):
|
|
|
415 |
Returns the default values for the tokenize prompt function
|
416 |
"""
|
417 |
|
418 |
+
result: Dict[str, List[int]] = {
|
419 |
"input_ids": [],
|
420 |
"attention_mask": [],
|
421 |
"labels": [],
|
src/axolotl/prompters.py
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
import dataclasses
|
4 |
import logging
|
5 |
from enum import auto, Enum
|
6 |
-
from typing import List, Union, Generator
|
7 |
|
8 |
IGNORE_TOKEN_ID = -100
|
9 |
|
@@ -24,7 +24,7 @@ class AlpacaPrompter:
|
|
24 |
|
25 |
system_prompt = "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n"
|
26 |
system_no_input_prompt = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n"
|
27 |
-
prompt_style = None
|
28 |
|
29 |
def __init__(self, prompt_style=PromptStyle.INSTRUCT.value):
|
30 |
self.prompt_style = prompt_style if prompt_style else PromptStyle.INSTRUCT.value
|
@@ -231,18 +231,18 @@ class Conversation:
|
|
231 |
offset: int
|
232 |
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
233 |
sep: str = "###"
|
234 |
-
sep2: str = None
|
235 |
|
236 |
def get_prompt(self) -> Generator[str, None, None]:
|
237 |
-
seps = [self.sep, self.sep2]
|
238 |
-
preamble = self.system +
|
239 |
yield preamble
|
240 |
for _, (role, message) in enumerate(self.messages):
|
241 |
if message:
|
242 |
-
yield
|
243 |
else:
|
244 |
logging.warning(f"role with empty message: {role}")
|
245 |
-
yield
|
246 |
|
247 |
def copy(self):
|
248 |
return Conversation(
|
|
|
3 |
import dataclasses
|
4 |
import logging
|
5 |
from enum import auto, Enum
|
6 |
+
from typing import List, Optional, Union, Generator
|
7 |
|
8 |
IGNORE_TOKEN_ID = -100
|
9 |
|
|
|
24 |
|
25 |
system_prompt = "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n"
|
26 |
system_no_input_prompt = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n"
|
27 |
+
prompt_style: Optional[PromptStyle] = None
|
28 |
|
29 |
def __init__(self, prompt_style=PromptStyle.INSTRUCT.value):
|
30 |
self.prompt_style = prompt_style if prompt_style else PromptStyle.INSTRUCT.value
|
|
|
231 |
offset: int
|
232 |
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
233 |
sep: str = "###"
|
234 |
+
sep2: Optional[str] = None
|
235 |
|
236 |
def get_prompt(self) -> Generator[str, None, None]:
|
237 |
+
# seps = [self.sep, self.sep2]
|
238 |
+
preamble = self.system + self.sep
|
239 |
yield preamble
|
240 |
for _, (role, message) in enumerate(self.messages):
|
241 |
if message:
|
242 |
+
yield role + ":" + " " + message
|
243 |
else:
|
244 |
logging.warning(f"role with empty message: {role}")
|
245 |
+
yield role + ":"
|
246 |
|
247 |
def copy(self):
|
248 |
return Conversation(
|
src/axolotl/utils/data.py
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
import logging
|
4 |
from hashlib import md5
|
5 |
from pathlib import Path
|
6 |
-
from typing import Tuple, Union
|
7 |
|
8 |
from datasets import (
|
9 |
load_from_disk,
|
@@ -95,40 +95,36 @@ def load_tokenized_prepared_datasets(
|
|
95 |
|
96 |
# prefer local dataset, even if hub exists
|
97 |
if Path(d.path).exists():
|
98 |
-
ds
|
99 |
"json", data_files=d.path, streaming=False, split=None
|
100 |
)
|
101 |
elif ds_from_hub:
|
102 |
if d.data_files:
|
103 |
-
ds
|
104 |
d.path,
|
105 |
streaming=False,
|
106 |
data_files=d.data_files,
|
107 |
use_auth_token=use_auth_token,
|
108 |
)
|
109 |
else:
|
110 |
-
ds
|
111 |
d.path, streaming=False, use_auth_token=use_auth_token
|
112 |
)
|
113 |
else:
|
114 |
fp = hf_hub_download(
|
115 |
repo_id=d.path, repo_type="dataset", filename=d.data_files
|
116 |
)
|
117 |
-
ds
|
118 |
-
"json", data_files=fp, streaming=False, split=None
|
119 |
-
)
|
120 |
if not ds:
|
121 |
raise ValueError("unhandled dataset load")
|
122 |
# support for using a subset of the data
|
123 |
if d.shards:
|
124 |
if "train" in ds:
|
125 |
-
ds
|
126 |
num_shards=d.shards, index=0
|
127 |
)
|
128 |
else:
|
129 |
-
ds
|
130 |
-
num_shards=d.shards, index=0
|
131 |
-
)
|
132 |
d_type = d.type
|
133 |
d_type_split = d_type.split(":")
|
134 |
d_base_type = d_type_split[0]
|
@@ -232,7 +228,7 @@ def load_tokenized_prepared_datasets(
|
|
232 |
logging.error(f"unhandled prompt tokenization strategy: {d.type}")
|
233 |
logging.info("tokenizing, merging, and shuffling master dataset")
|
234 |
|
235 |
-
samples = []
|
236 |
for d in datasets:
|
237 |
samples = samples + list(d)
|
238 |
dataset = Dataset.from_list(samples).shuffle(seed=42)
|
|
|
3 |
import logging
|
4 |
from hashlib import md5
|
5 |
from pathlib import Path
|
6 |
+
from typing import List, Tuple, Union
|
7 |
|
8 |
from datasets import (
|
9 |
load_from_disk,
|
|
|
95 |
|
96 |
# prefer local dataset, even if hub exists
|
97 |
if Path(d.path).exists():
|
98 |
+
ds = load_dataset(
|
99 |
"json", data_files=d.path, streaming=False, split=None
|
100 |
)
|
101 |
elif ds_from_hub:
|
102 |
if d.data_files:
|
103 |
+
ds = load_dataset(
|
104 |
d.path,
|
105 |
streaming=False,
|
106 |
data_files=d.data_files,
|
107 |
use_auth_token=use_auth_token,
|
108 |
)
|
109 |
else:
|
110 |
+
ds = load_dataset(
|
111 |
d.path, streaming=False, use_auth_token=use_auth_token
|
112 |
)
|
113 |
else:
|
114 |
fp = hf_hub_download(
|
115 |
repo_id=d.path, repo_type="dataset", filename=d.data_files
|
116 |
)
|
117 |
+
ds = load_dataset("json", data_files=fp, streaming=False, split=None)
|
|
|
|
|
118 |
if not ds:
|
119 |
raise ValueError("unhandled dataset load")
|
120 |
# support for using a subset of the data
|
121 |
if d.shards:
|
122 |
if "train" in ds:
|
123 |
+
ds = ds.shuffle(seed=42)["train"].shard(
|
124 |
num_shards=d.shards, index=0
|
125 |
)
|
126 |
else:
|
127 |
+
ds = ds.shuffle(seed=42).shard(num_shards=d.shards, index=0)
|
|
|
|
|
128 |
d_type = d.type
|
129 |
d_type_split = d_type.split(":")
|
130 |
d_base_type = d_type_split[0]
|
|
|
228 |
logging.error(f"unhandled prompt tokenization strategy: {d.type}")
|
229 |
logging.info("tokenizing, merging, and shuffling master dataset")
|
230 |
|
231 |
+
samples: List[int] = []
|
232 |
for d in datasets:
|
233 |
samples = samples + list(d)
|
234 |
dataset = Dataset.from_list(samples).shuffle(seed=42)
|
src/axolotl/utils/models.py
CHANGED
@@ -81,7 +81,7 @@ def load_model(
|
|
81 |
adapter="lora",
|
82 |
inference=False,
|
83 |
):
|
84 |
-
# type: (str, str, str, str, DictDefault, Optional[str], bool) -> Tuple[PreTrainedModel,
|
85 |
"""
|
86 |
Load a model from a base model and a model type.
|
87 |
"""
|
|
|
81 |
adapter="lora",
|
82 |
inference=False,
|
83 |
):
|
84 |
+
# type: (str, str, str, str, DictDefault, Optional[str], bool) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
|
85 |
"""
|
86 |
Load a model from a base model and a model type.
|
87 |
"""
|
src/axolotl/utils/trainer.py
CHANGED
@@ -5,6 +5,7 @@ import math
|
|
5 |
import os
|
6 |
import sys
|
7 |
from pathlib import Path
|
|
|
8 |
|
9 |
import bitsandbytes as bnb
|
10 |
import torch.cuda
|
@@ -28,7 +29,7 @@ class OneCycleLRSchedulerTrainer(Trainer):
|
|
28 |
self.lr_scheduler = None
|
29 |
|
30 |
def create_scheduler(
|
31 |
-
self, num_training_steps: int, optimizer: torch.optim.Optimizer = None
|
32 |
):
|
33 |
optimizer = self.optimizer if optimizer is None else optimizer
|
34 |
num_warmup_steps = self.args.get_warmup_steps(num_training_steps)
|
|
|
5 |
import os
|
6 |
import sys
|
7 |
from pathlib import Path
|
8 |
+
from typing import Optional
|
9 |
|
10 |
import bitsandbytes as bnb
|
11 |
import torch.cuda
|
|
|
29 |
self.lr_scheduler = None
|
30 |
|
31 |
def create_scheduler(
|
32 |
+
self, num_training_steps: int, optimizer: Optional[torch.optim.Optimizer] = None
|
33 |
):
|
34 |
optimizer = self.optimizer if optimizer is None else optimizer
|
35 |
num_warmup_steps = self.args.get_warmup_steps(num_training_steps)
|