""" CLI to shard a trained model into 10GiB chunks """ import logging from pathlib import Path from typing import Union import fire import transformers from axolotl.cli import load_cfg, print_axolotl_text_art from axolotl.common.cli import TrainerCliArgs, load_model_and_tokenizer from axolotl.utils.dict import DictDefault LOG = logging.getLogger("axolotl.scripts") def shard( *, cfg: DictDefault, cli_args: TrainerCliArgs, ): model, _ = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args) safe_serialization = cfg.save_safetensors is True LOG.debug("Re-saving model w/ sharding") model.save_pretrained(cfg.output_dir, safe_serialization=safe_serialization) def do_cli(config: Union[Path, str] = Path("examples/"), **kwargs): # pylint: disable=duplicate-code print_axolotl_text_art() parsed_cfg = load_cfg(config, **kwargs) parser = transformers.HfArgumentParser((TrainerCliArgs)) parsed_cli_args, _ = parser.parse_args_into_dataclasses( return_remaining_strings=True ) parsed_cli_args.shard = True shard(cfg=parsed_cfg, cli_args=parsed_cli_args) if __name__ == "__main__": fire.Fire(do_cli)