"""Prepare and train a model on a dataset. Can also infer from a model or merge lora""" import importlib import logging import math import os import random import sys from pathlib import Path from threading import Thread from typing import Any, Dict, List, Optional, Union import gradio as gr import torch import yaml # add src to the pythonpath so we don't need to pip install this from accelerate.commands.config import config_args from art import text2art from datasets import concatenate_datasets, load_dataset from huggingface_hub import HfApi from huggingface_hub.utils import LocalTokenNotFoundError from transformers import GenerationConfig, TextIteratorStreamer, TextStreamer from axolotl.common.cli import TrainerCliArgs, load_model_and_tokenizer from axolotl.logging_config import configure_logging from axolotl.train import TrainDatasetMeta from axolotl.utils.config import ( normalize_cfg_datasets, normalize_config, validate_config, ) from axolotl.utils.data import prepare_dataset from axolotl.utils.dict import DictDefault from axolotl.utils.distributed import is_main_process from axolotl.utils.mlflow_ import setup_mlflow_env_vars from axolotl.utils.models import load_tokenizer from axolotl.utils.tokenization import check_dataset_labels from axolotl.utils.trainer import prepare_optim_env from axolotl.utils.wandb_ import setup_wandb_env_vars project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) src_dir = os.path.join(project_root, "src") sys.path.insert(0, src_dir) configure_logging() LOG = logging.getLogger("axolotl.scripts") os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" def print_axolotl_text_art(suffix=None): font = "nancyj" ascii_text = " axolotl" if suffix: ascii_text += f" x {suffix}" ascii_art = text2art(ascii_text, font=font) if is_main_process(): print(ascii_art) def get_multi_line_input() -> Optional[str]: print("Give me an instruction (Ctrl + D to submit): ") instruction = "" for line in sys.stdin: instruction += line # pylint: disable=consider-using-join # instruction = pathlib.Path("/proc/self/fd/0").read_text() return instruction def do_merge_lora( *, cfg: DictDefault, cli_args: TrainerCliArgs, ): model, tokenizer = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args) safe_serialization = cfg.save_safetensors is True LOG.info("running merge of LoRA with base model") model = model.merge_and_unload(progressbar=True) model.to(dtype=cfg.torch_dtype) if cfg.local_rank == 0: LOG.info(f"saving merged model to: {str(Path(cfg.output_dir) / 'merged')}") model.save_pretrained( str(Path(cfg.output_dir) / "merged"), safe_serialization=safe_serialization, progressbar=True, ) tokenizer.save_pretrained(str(Path(cfg.output_dir) / "merged")) def do_inference( *, cfg: DictDefault, cli_args: TrainerCliArgs, ): model, tokenizer = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args) prompter = cli_args.prompter default_tokens = {"unk_token": "", "bos_token": "", "eos_token": ""} for token, symbol in default_tokens.items(): # If the token isn't already specified in the config, add it if not (cfg.special_tokens and token in cfg.special_tokens): tokenizer.add_special_tokens({token: symbol}) prompter_module = None if prompter: prompter_module = getattr( importlib.import_module("axolotl.prompters"), prompter ) model = model.to(cfg.device, dtype=cfg.torch_dtype) while True: print("=" * 80) # support for multiline inputs instruction = get_multi_line_input() if not instruction: return if prompter_module: prompt: str = next( prompter_module().build_prompt(instruction=instruction.strip("\n")) ) else: prompt = instruction.strip() batch = tokenizer(prompt, return_tensors="pt", add_special_tokens=True) print("=" * 40) model.eval() with torch.no_grad(): generation_config = GenerationConfig( repetition_penalty=1.1, max_new_tokens=1024, temperature=0.9, top_p=0.95, top_k=40, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, do_sample=True, use_cache=True, return_dict_in_generate=True, output_attentions=False, output_hidden_states=False, output_scores=False, ) streamer = TextStreamer(tokenizer) generated = model.generate( inputs=batch["input_ids"].to(cfg.device), generation_config=generation_config, streamer=streamer, ) print("=" * 40) print(tokenizer.decode(generated["sequences"].cpu().tolist()[0])) def do_inference_gradio( *, cfg: DictDefault, cli_args: TrainerCliArgs, ): model, tokenizer = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args) prompter = cli_args.prompter default_tokens = {"unk_token": "", "bos_token": "", "eos_token": ""} for token, symbol in default_tokens.items(): # If the token isn't already specified in the config, add it if not (cfg.special_tokens and token in cfg.special_tokens): tokenizer.add_special_tokens({token: symbol}) prompter_module = None if prompter: prompter_module = getattr( importlib.import_module("axolotl.prompters"), prompter ) model = model.to(cfg.device, dtype=cfg.torch_dtype) def generate(instruction): if not instruction: return if prompter_module: # pylint: disable=stop-iteration-return prompt: str = next( prompter_module().build_prompt(instruction=instruction.strip("\n")) ) else: prompt = instruction.strip() batch = tokenizer(prompt, return_tensors="pt", add_special_tokens=True) model.eval() with torch.no_grad(): generation_config = GenerationConfig( repetition_penalty=1.1, max_new_tokens=1024, temperature=0.9, top_p=0.95, top_k=40, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, do_sample=True, use_cache=True, return_dict_in_generate=True, output_attentions=False, output_hidden_states=False, output_scores=False, ) streamer = TextIteratorStreamer(tokenizer) generation_kwargs = { "inputs": batch["input_ids"].to(cfg.device), "generation_config": generation_config, "streamer": streamer, } thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() all_text = "" for new_text in streamer: all_text += new_text yield all_text demo = gr.Interface( fn=generate, inputs="textbox", outputs="text", title=cfg.get("gradio_title", "Axolotl Gradio Interface"), ) demo.queue().launch(show_api=False, share=True) def choose_config(path: Path): yaml_files = list(path.glob("*.yml")) if not yaml_files: raise ValueError( "No YAML config files found in the specified directory. Are you using a .yml extension?" ) if len(yaml_files) == 1: print(f"Using default YAML file '{yaml_files[0]}'") return yaml_files[0] print("Choose a YAML file:") for idx, file in enumerate(yaml_files): print(f"{idx + 1}. {file}") chosen_file = None while chosen_file is None: try: choice = int(input("Enter the number of your choice: ")) if 1 <= choice <= len(yaml_files): chosen_file = yaml_files[choice - 1] else: print("Invalid choice. Please choose a number from the list.") except ValueError: print("Invalid input. Please enter a number.") return chosen_file def check_not_in(list1: List[str], list2: Union[Dict[str, Any], List[str]]) -> bool: return not any(el in list2 for el in list1) def load_cfg(config: Path = Path("examples/"), **kwargs): if Path(config).is_dir(): config = choose_config(config) # load the config from the yaml file with open(config, encoding="utf-8") as file: cfg: DictDefault = DictDefault(yaml.safe_load(file)) cfg.axolotl_config_path = config # if there are any options passed in the cli, if it is something that seems valid from the yaml, # then overwrite the value cfg_keys = cfg.keys() for k, _ in kwargs.items(): # if not strict, allow writing to cfg even if it's not in the yml already if k in cfg_keys or not cfg.strict: # handle booleans if isinstance(cfg[k], bool): cfg[k] = bool(kwargs[k]) else: cfg[k] = kwargs[k] validate_config(cfg) prepare_optim_env(cfg) normalize_config(cfg) normalize_cfg_datasets(cfg) setup_wandb_env_vars(cfg) setup_mlflow_env_vars(cfg) return cfg def load_datasets( *, cfg: DictDefault, cli_args: TrainerCliArgs, ) -> TrainDatasetMeta: tokenizer = load_tokenizer(cfg) train_dataset, eval_dataset, total_num_steps, prompters = prepare_dataset( cfg, tokenizer ) if cli_args.debug or cfg.debug: LOG.info("check_dataset_labels...") check_dataset_labels( train_dataset.select( [ random.randrange(0, len(train_dataset) - 1) # nosec for _ in range(cli_args.debug_num_examples) ] ), tokenizer, num_examples=cli_args.debug_num_examples, text_only=cli_args.debug_text_only, ) LOG.info("printing prompters...") for prompter in prompters: LOG.info(prompter) return TrainDatasetMeta( train_dataset=train_dataset, eval_dataset=eval_dataset, total_num_steps=total_num_steps, ) def load_rl_datasets( *, cfg: DictDefault, cli_args: TrainerCliArgs, # pylint: disable=unused-argument ) -> TrainDatasetMeta: train_datasets: List[Any] = [] for i, ds_cfg in enumerate(cfg.datasets): train_datasets.insert(i, load_dataset(ds_cfg["path"], split=ds_cfg["split"])) # eval_dataset = load_dataset( # cfg.test_datasets[0]["path"], split=cfg.test_datasets[0]["split"] # ) eval_dataset = None def argilla_apply_chatml(sample): # pylint: disable=possibly-unused-variable if "system" in sample and sample["system"]: sample["prompt"] = ( f"<|im_start|>system\n{sample['system']}<|im_end|>\n" f"<|im_start|>user\n{sample['instruction']}<|im_end|>\n<|im_start|>assistant\n" ) else: sample[ "prompt" ] = f"<|im_start|>user\n{sample['instruction']}<|im_end|>\n<|im_start|>assistant\n" sample["chosen"] = f"{sample['chosen_response']}<|im_end|>" sample["rejected"] = f"{sample['rejected_response']}<|im_end|>" return sample def intel_apply_chatml(sample): # pylint: disable=possibly-unused-variable if "system" in sample and sample["system"]: sample["prompt"] = ( f"<|im_start|>system\n{sample['system']}<|im_end|>\n" f"<|im_start|>user\n{sample['question']}<|im_end|>\n<|im_start|>assistant\n" ) else: sample[ "prompt" ] = f"<|im_start|>user\n{sample['question']}<|im_end|>\n<|im_start|>assistant\n" sample["chosen"] = f"{sample['chosen']}<|im_end|>" sample["rejected"] = f"{sample['rejected']}<|im_end|>" return sample def apply_chatml(sample): # pylint: disable=possibly-unused-variable if "system" in sample and sample["system"]: sample["prompt"] = ( f"<|im_start|>system\n{sample['system']}<|im_end|>\n" f"<|im_start|>user\n{sample['prompt']}<|im_end|>\n<|im_start|>assistant\n" ) else: sample[ "prompt" ] = f"<|im_start|>user\n{sample['prompt']}<|im_end|>\n<|im_start|>assistant\n" sample["chosen"] = f"{sample['chosen']}<|im_end|>" sample["rejected"] = f"{sample['rejected']}<|im_end|>" return sample def ultra_apply_chatml(sample): # pylint: disable=possibly-unused-variable if "system" in sample and sample["system"]: sample["prompt"] = ( f"<|im_start|>system\n{sample['system']}<|im_end|>\n" f"<|im_start|>user\n{sample['prompt']}<|im_end|>\n<|im_start|>assistant\n" ) else: sample[ "prompt" ] = f"<|im_start|>user\n{sample['prompt']}<|im_end|>\n<|im_start|>assistant\n" sample["chosen"] = f"{sample['chosen'][1]['content']}<|im_end|>" sample["rejected"] = f"{sample['rejected'][1]['content']}<|im_end|>" return sample for i, data_set in enumerate(train_datasets): _type = cfg.datasets[i]["type"] ds_type_fn = locals()[_type] train_datasets[i] = data_set.map(ds_type_fn) train_dataset = concatenate_datasets(train_datasets) # eval_dataset = eval_dataset.map(intel_apply_chatml) total_num_steps = int( math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size) ) return TrainDatasetMeta( train_dataset=train_dataset, eval_dataset=eval_dataset, total_num_steps=total_num_steps, ) def check_accelerate_default_config(): if Path(config_args.default_yaml_config_file).exists(): LOG.warning( f"accelerate config file found at {config_args.default_yaml_config_file}. This can lead to unexpected errors" ) def check_user_token(): # Verify if token is valid api = HfApi() try: user_info = api.whoami() return bool(user_info) except LocalTokenNotFoundError: LOG.warning( "Error verifying HuggingFace token. Remember to log in using `huggingface-cli login` and get your access token from https://huggingface.co/settings/tokens if you want to use gated models or datasets." ) return False