""" E2E tests for lora llama """ import logging import os import unittest from pathlib import Path from axolotl.cli import load_datasets from axolotl.common.cli import TrainerCliArgs from axolotl.train import train from axolotl.utils.config import normalize_config from axolotl.utils.dict import DictDefault from .utils import with_temp_dir LOG = logging.getLogger("axolotl.tests.e2e") os.environ["WANDB_DISABLED"] = "true" class TestPhi(unittest.TestCase): """ Test case for Phi2 models """ @with_temp_dir def test_phi_ft(self, temp_dir): # pylint: disable=duplicate-code cfg = DictDefault( { "base_model": "microsoft/phi-1_5", "model_type": "AutoModelForCausalLM", "tokenizer_type": "AutoTokenizer", "sequence_len": 2048, "sample_packing": False, "load_in_8bit": False, "adapter": None, "val_set_size": 0.1, "special_tokens": { "pad_token": "<|endoftext|>", }, "datasets": [ { "path": "mhenrichsen/alpaca_2k_test", "type": "alpaca", }, ], "dataset_shard_num": 10, "dataset_shard_idx": 0, "num_epochs": 1, "micro_batch_size": 1, "gradient_accumulation_steps": 1, "output_dir": temp_dir, "learning_rate": 0.00001, "optimizer": "paged_adamw_8bit", "lr_scheduler": "cosine", "flash_attention": True, "max_steps": 10, "save_steps": 10, "eval_steps": 10, "bf16": "auto", } ) normalize_config(cfg) cli_args = TrainerCliArgs() dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) assert (Path(temp_dir) / "pytorch_model.bin").exists() @with_temp_dir def test_phi_qlora(self, temp_dir): # pylint: disable=duplicate-code cfg = DictDefault( { "base_model": "microsoft/phi-1_5", "model_type": "AutoModelForCausalLM", "tokenizer_type": "AutoTokenizer", "sequence_len": 2048, "sample_packing": False, "load_in_8bit": False, "adapter": "qlora", "lora_r": 64, "lora_alpha": 32, "lora_dropout": 0.05, "lora_target_linear": True, "val_set_size": 0.1, "special_tokens": { "pad_token": "<|endoftext|>", }, "datasets": [ { "path": "mhenrichsen/alpaca_2k_test", "type": "alpaca", }, ], "dataset_shard_num": 10, "dataset_shard_idx": 0, "num_epochs": 1, "micro_batch_size": 1, "gradient_accumulation_steps": 1, "output_dir": temp_dir, "learning_rate": 0.00001, "optimizer": "paged_adamw_8bit", "lr_scheduler": "cosine", "flash_attention": True, "max_steps": 10, "save_steps": 10, "eval_steps": 10, "bf16": "auto", } ) normalize_config(cfg) cli_args = TrainerCliArgs() dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) assert (Path(temp_dir) / "adapter_model.bin").exists()