base_model: huggyllama/llama-65b model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: true datasets: - path: data/alpaca_data_gpt4.jsonl type: alpaca - path: data/vicuna_cleaned.jsonl type: sharegpt - path: data/gpt4-instruct-similarity-0.6-dataset.jsonl type: gpteacher - path: data/roleplay-similarity_0.6-instruct-dataset.jsonl type: gpteacher dataset_prepared_path: data/last_run val_set_size: 0.04 adapter: lora lora_model_dir: sequence_len: 2048 lora_r: 8 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: - q_proj - w_proj lora_fan_in_fan_out: true # pythia/GPTNeoX lora specific wandb_project: llama-65b-lora wandb_watch: wandb_run_name: wandb_log_model: checkpoint output_dir: ./lora-llama-alpaca batch_size: 128 micro_batch_size: 16 num_epochs: 5 learning_rate: 0.00003 train_on_inputs: false group_by_length: false bf16: true tf32: true resume_from_checkpoint: local_rank: deepspeed: