""" E2E tests for lora llama """ import logging import os import tempfile import unittest from pathlib import Path from transformers.utils import is_torch_bf16_gpu_available from axolotl.cli import load_datasets from axolotl.common.cli import TrainerCliArgs from axolotl.train import train from axolotl.utils.config import normalize_config from axolotl.utils.dict import DictDefault LOG = logging.getLogger("axolotl.tests.e2e") os.environ["WANDB_DISABLED"] = "true" class TestMistral(unittest.TestCase): """ Test case for Llama models using LoRA """ def test_lora(self): # pylint: disable=duplicate-code output_dir = tempfile.mkdtemp() cfg = DictDefault( { "base_model": "openaccess-ai-collective/tiny-mistral", "base_model_config": "openaccess-ai-collective/tiny-mistral", "flash_attention": True, "sequence_len": 1024, "load_in_8bit": True, "adapter": "lora", "lora_r": 32, "lora_alpha": 64, "lora_dropout": 0.05, "lora_target_linear": True, "val_set_size": 0.1, "special_tokens": { "unk_token": "", "bos_token": "", "eos_token": "", }, "datasets": [ { "path": "mhenrichsen/alpaca_2k_test", "type": "alpaca", }, ], "num_epochs": 2, "micro_batch_size": 2, "gradient_accumulation_steps": 1, "output_dir": output_dir, "learning_rate": 0.00001, "optimizer": "adamw_torch", "lr_scheduler": "cosine", "max_steps": 20, "save_steps": 10, "eval_steps": 10, } ) normalize_config(cfg) cli_args = TrainerCliArgs() dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) assert (Path(output_dir) / "adapter_model.bin").exists() def test_ft(self): # pylint: disable=duplicate-code output_dir = tempfile.mkdtemp() cfg = DictDefault( { "base_model": "openaccess-ai-collective/tiny-mistral", "base_model_config": "openaccess-ai-collective/tiny-mistral", "flash_attention": True, "sequence_len": 1024, "val_set_size": 0.1, "special_tokens": { "unk_token": "", "bos_token": "", "eos_token": "", }, "datasets": [ { "path": "mhenrichsen/alpaca_2k_test", "type": "alpaca", }, ], "num_epochs": 2, "micro_batch_size": 2, "gradient_accumulation_steps": 1, "output_dir": output_dir, "learning_rate": 0.00001, "optimizer": "adamw_torch", "lr_scheduler": "cosine", "max_steps": 20, "save_steps": 10, "eval_steps": 10, } ) if is_torch_bf16_gpu_available(): cfg.bf16 = True else: cfg.fp16 = True normalize_config(cfg) cli_args = TrainerCliArgs() dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) assert (Path(output_dir) / "pytorch_model.bin").exists()