base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: false load_in_4bit: false strict: false max_steps: 200 pretraining_dataset: path: c4 name: en type: pretrain dataset_prepared_path: val_set_size: 0.0 output_dir: ./outputs/model-out sequence_len: 2048 sample_packing: true wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: