"""Module for custom LRScheduler class""" import math from functools import partial from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR, LRScheduler class InterpolatingLogScheduler(LRScheduler): """ A scheduler that interpolates learning rates in a logarithmic fashion """ def __init__(self, optimizer, num_steps, min_lr, max_lr, last_epoch=-1): """A scheduler that interpolates learning rates in a logarithmic fashion Args: - optimizer: pytorch optimizer - num_steps: int, the number of steps over which to increase from the min_lr to the max_lr - min_lr: float, the minimum learning rate - max_lr: float, the maximum learning rate Usage: fc = nn.Linear(1,1) optimizer = optim.Adam(fc.parameters()) lr_scheduler = InterpolatingLogScheduler(optimizer, num_steps=400, min_lr=1e-6, max_lr=1e-4) """ self.num_steps = num_steps self.min_lr = min_lr self.max_lr = max_lr self.q = (max_lr / min_lr) ** ( # pylint: disable=invalid-name 1 / (num_steps - 1) ) super().__init__(optimizer, last_epoch) def get_lr(self): if self.last_epoch <= 0: lrs = [self.min_lr for base_lr in self.base_lrs] elif self.last_epoch < self.num_steps: lrs = [ self.min_lr * (self.q ** (self.last_epoch - 1)) for base_lr in self.base_lrs ] else: lrs = [self.max_lr for base_lr in self.base_lrs] return lrs def _get_cosine_schedule_with_quadratic_warmup_lr_lambda( current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_cycles: float, ): if current_step < num_warmup_steps: return (float(current_step) / float(max(1, num_warmup_steps))) ** 2 progress = float(current_step - num_warmup_steps) / float( max(1, num_training_steps - num_warmup_steps) ) return max( 0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)) ) def get_cosine_schedule_with_quadratic_warmup( optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: float = 0.5, last_epoch: int = -1, ): """ Create a schedule with a learning rate that decreases following the values of the cosine function between the initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the initial lr set in the optimizer. Args: optimizer ([`~torch.optim.Optimizer`]): The optimizer for which to schedule the learning rate. num_warmup_steps (`int`): The number of steps for the warmup phase. num_training_steps (`int`): The total number of training steps. num_cycles (`float`, *optional*, defaults to 0.5): The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0 following a half-cosine). last_epoch (`int`, *optional*, defaults to -1): The index of the last epoch when resuming training. Return: `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. """ lr_lambda = partial( _get_cosine_schedule_with_quadratic_warmup_lr_lambda, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, num_cycles=num_cycles, ) return LambdaLR(optimizer, lr_lambda, last_epoch) def _get_cosine_schedule_with_min_lr_lambda( current_step: int, *, num_warmup_steps: int, num_training_steps: int, min_lr_ratio: float, ): # Warm up if current_step < num_warmup_steps: return float(current_step) / float(max(1, num_warmup_steps)) # Cosine learning rate decay progress = float(current_step - num_warmup_steps) / float( max(1, num_training_steps - num_warmup_steps) ) scaling = 0.5 * (1.0 + math.cos(math.pi * progress)) return (1 - min_lr_ratio) * scaling + min_lr_ratio def get_cosine_schedule_with_min_lr( optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, min_lr_ratio: float = 0.0, ): """ Create a learning rate schedule which has: - linear warmup from 0 -> `max_lr` over `num_warmup_steps` - cosine learning rate annealing from `max_lr` -> `min_lr` over `num_training_steps` """ lr_lambda = partial( _get_cosine_schedule_with_min_lr_lambda, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, min_lr_ratio=min_lr_ratio, ) return LambdaLR(optimizer, lr_lambda) def _get_cosine_schedule_with_warmup_decay_constant_lr_lambda( current_step: int, *, num_warmup_steps: int, num_training_steps: int, constant_lr_ratio: float, min_lr_ratio: float, num_cycles: float, ): if current_step < num_warmup_steps: return float(current_step) / float(max(1, num_warmup_steps)) num_constant_steps = int(num_training_steps * constant_lr_ratio) current_step = min(current_step, num_constant_steps) progress = float(current_step - num_warmup_steps) / float( max(1, num_constant_steps - num_warmup_steps) ) return ( max( 0, (1 - min_lr_ratio) * 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)), ) + min_lr_ratio ) def get_cosine_schedule_with_warmup_decay_constant( optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, constant_lr_ratio: float, min_lr_ratio: float, num_cycles: float = 0.5, last_epoch: int = -1, ): """ Implementation of Continual Pre-Training of Large Language Models: How to (re)warm your model? (https://arxiv.org/pdf/2308.04014.pdf) Create a schedule with a learning rate that decreases following the values of the cosine function between the initial lr set in the optimizer to min_lr_ratio until num_training_steps * constant_lr_ratio, after constant_rate returns constant value of min_rate , after a warmup period during which it increases linearly between 0 and the initial lr set in the optimizer. Args: optimizer ([`~torch.optim.Optimizer`]): The optimizer for which to schedule the learning rate. num_warmup_steps (`int`): The number of steps for the warmup phase. num_training_steps (`int`): The total number of training steps. constant_lr_ratio: (`float`): The ratio of num_training_steps to decrease by cosine function. min_lr_ratio: (`float): The ratio of maximum learning rate for cosine function to decay to minimum learning rate. num_cycles (`float`, *optional*, defaults to 0.5): The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0 following a half-cosine). last_epoch (`int`, *optional*, defaults to -1): The index of the last epoch when resuming training. Return: `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. """ lr_lambda = partial( _get_cosine_schedule_with_warmup_decay_constant_lr_lambda, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, constant_lr_ratio=constant_lr_ratio, min_lr_ratio=min_lr_ratio, num_cycles=num_cycles, ) return LambdaLR(optimizer, lr_lambda, last_epoch)