""" test module for the axolotl.utis.data module """ import unittest import torch from torch.optim import SGD from axolotl.utils.schedulers import get_cosine_schedule_with_warmup_decay_constant class TestCosineConstantLr(unittest.TestCase): """ test class for encode pretraining and md5 helper """ def setUp(self): self.train_steps = 1000 self.warmup_steps = 10 self.min_lr_ratio = 0.1 self.constant_lr_ratio = 0.8 self._lr = 0.01 self.optimizer = SGD([torch.tensor(1)], lr=self._lr) self.lr_scheduler = get_cosine_schedule_with_warmup_decay_constant( # pylint: disable=attribute-defined-outside-init self.optimizer, num_warmup_steps=self.warmup_steps, num_training_steps=self.train_steps, min_lr_ratio=self.min_lr_ratio, constant_lr_ratio=self.constant_lr_ratio, ) def test_schedulers(self): self.assertEqual(self.lr_scheduler.get_last_lr()[0], 0) for _ in range(self.warmup_steps): self.lr_scheduler.step() self.assertEqual(self.lr_scheduler.get_last_lr()[0], self._lr) constant_step = int(self.train_steps * self.constant_lr_ratio) remaining_step = self.train_steps - constant_step for _ in range(constant_step): self.lr_scheduler.step() self.assertEqual( self.lr_scheduler.get_last_lr()[0], self._lr * self.min_lr_ratio ) for _ in range(remaining_step): self.lr_scheduler.step() self.assertEqual( self.lr_scheduler.get_last_lr()[0], self._lr * self.min_lr_ratio ) if __name__ == "__main__": unittest.main()