base_model: 01-ai/Yi-34B-Chat model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: false load_in_4bit: true strict: false sequence_len: 1024 bf16: auto fp16: tf32: false flash_attention: true special_tokens: bos_token: "<|startoftext|>" eos_token: "<|endoftext|>" unk_token: "" # Data datasets: - path: mhenrichsen/alpaca_2k_test type: alpaca warmup_steps: 10 # Iterations num_epochs: 1 # Evaluation val_set_size: 0.1 evals_per_epoch: 5 eval_table_size: eval_max_new_tokens: 128 eval_sample_packing: false eval_batch_size: 1 # LoRA output_dir: ./qlora-out adapter: qlora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: # Sampling sample_packing: false pad_to_sequence_len: false # Batching gradient_accumulation_steps: 4 micro_batch_size: 1 gradient_checkpointing: true # wandb wandb_project: # Optimizer optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.0002 # Misc train_on_inputs: false group_by_length: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: debug: deepspeed: weight_decay: 0 fsdp: fsdp_config: