""" Test module for alpaca integration w chatml """ import pytest from datasets import Dataset from tokenizers import AddedToken from transformers import AutoTokenizer from axolotl.datasets import TokenizedPromptDataset from axolotl.prompt_tokenizers import AlpacaPromptTokenizingStrategy from axolotl.prompters import AlpacaPrompter, PromptStyle @pytest.fixture(name="alpaca_dataset") def fixture_alpaca_dataset(): return Dataset.from_list( [ { "instruction": "Evaluate this sentence for spelling and grammar mistakes", "input": "He finnished his meal and left the resturant", "output": "He finished his meal and left the restaurant.", } ] ) @pytest.fixture(name="tokenizer") def fixture_tokenizer(): # pylint: disable=all tokenizer = AutoTokenizer.from_pretrained( "casperhansen/mistral-7b-instruct-v0.1-awq" ) tokenizer.add_special_tokens( { "eos_token": AddedToken( "<|im_end|>", rstrip=False, lstrip=False, normalized=False ) } ) tokenizer.add_tokens( [ AddedToken("<|im_start|>", rstrip=False, lstrip=False, normalized=False), ] ) return tokenizer class TestAlpacaChatml: """ Test class for alpaca prompter """ def test_no_double_im_end(self, alpaca_dataset, tokenizer): strategy = AlpacaPromptTokenizingStrategy( AlpacaPrompter(prompt_style=PromptStyle.CHATML.value), tokenizer, False, # train_on_inputs 2048, # sequence_len ) dataset_wrapper = TokenizedPromptDataset( strategy, alpaca_dataset, process_count=1 ) input_ids = dataset_wrapper[0]["input_ids"] # fmt: off assert input_ids == [ 1, # Bos 32001, 1587, 13, 20548, 336, 349, 396, 13126, 369, 13966, 264, 3638, 28725, 5881, 1360, 395, 396, 2787, 369, 5312, 3629, 2758, 28723, 12018, 264, 2899, 369, 6582, 1999, 2691, 274, 272, 2159, 28723, 32000, 28705, 13, # instruction 32001, 2188, 13, 16627, 11931, 456, 12271, 354, 668, 3572, 304, 18756, 3479, 17179, 13, 2428, 854, 28711, 1497, 516, 11314, 304, 1749, 272, 1846, 324, 440, 32000, 28705, 13, # input 32001, 13892, 13, 650, 5967, 516, 11314, 304, 1749, 272, 9926, 28723, 32000, # output ] # fmt: on def test_no_train_on_input(self, alpaca_dataset, tokenizer): strategy = AlpacaPromptTokenizingStrategy( AlpacaPrompter(prompt_style=PromptStyle.CHATML.value), tokenizer, False, # train_on_inputs 2048, # sequence_len ) dataset_wrapper = TokenizedPromptDataset( strategy, alpaca_dataset, process_count=1 ) labels = dataset_wrapper[0]["labels"] # fmt: off assert labels == [ -100, # bos -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, # instruction -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, # input -100, -100, -100, 650, 5967, 516, 11314, 304, 1749, 272, 9926, 28723, 32000, # Output ] # fmt: on def test_w_train_on_input(self, alpaca_dataset, tokenizer): strategy = AlpacaPromptTokenizingStrategy( AlpacaPrompter(prompt_style=PromptStyle.CHATML.value), tokenizer, True, # train_on_inputs 2048, # sequence_len ) dataset_wrapper = TokenizedPromptDataset( strategy, alpaca_dataset, process_count=1 ) labels = dataset_wrapper[0]["labels"] # fmt: off assert labels == [ 1, # Bos 32001, 1587, 13, 20548, 336, 349, 396, 13126, 369, 13966, 264, 3638, 28725, 5881, 1360, 395, 396, 2787, 369, 5312, 3629, 2758, 28723, 12018, 264, 2899, 369, 6582, 1999, 2691, 274, 272, 2159, 28723, 32000, 28705, 13, # instruction 32001, 2188, 13, 16627, 11931, 456, 12271, 354, 668, 3572, 304, 18756, 3479, 17179, 13, 2428, 854, 28711, 1497, 516, 11314, 304, 1749, 272, 1846, 324, 440, 32000, 28705, 13, # input 32001, 13892, 13, 650, 5967, 516, 11314, 304, 1749, 272, 9926, 28723, 32000, # output ] # fmt: on