#Mistral-7b base_model: mistralai/Mistral-7B-v0.1 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: true load_in_4bit: false strict: false datasets: - path: tilemachos/Demo-Dataset #Path to json dataset file in huggingface #for type,conversation arguments read axolotl readme and pick what is suited for your project, I wanted a chatbot and put sharegpt and chatml type: sharegpt conversation: chatml dataset_prepared_path: tilemachos/Demo-Dataset #Path to json dataset file in huggingface val_set_size: 0.05 output_dir: ./out #using lora for lower cost adapter: lora lora_r: 8 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: - q_proj - v_proj sequence_len: 512 sample_packing: false pad_to_sequence_len: true wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: #only 2 epochs because of small dataset gradient_accumulation_steps: 3 micro_batch_size: 2 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_table_max_new_tokens: 128 saves_per_epoch: 1 debug: #default deepspeed, can use more aggresive if needed like zero2, zero3 deepspeed: deepspeed_configs/zero1.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: ""