"""
Test dataset loading under various conditions.
"""
import shutil
import tempfile
import unittest
from pathlib import Path
from datasets import Dataset
from huggingface_hub import snapshot_download
from transformers import AutoTokenizer
from axolotl.utils.data import load_tokenized_prepared_datasets
from axolotl.utils.dict import DictDefault
class TestDatasetPreparation(unittest.TestCase):
"""Test a configured dataloader."""
def setUp(self) -> None:
self.tokenizer = AutoTokenizer.from_pretrained("huggyllama/llama-7b")
self.tokenizer.add_special_tokens(
{
"bos_token": "",
"eos_token": "",
"unk_token": "",
}
)
# Alpaca dataset.
self.dataset = Dataset.from_list(
[
{
"instruction": "Evaluate this sentence for spelling and grammar mistakes",
"input": "He finnished his meal and left the resturant",
"output": "He finished his meal and left the restaurant.",
}
]
)
def test_load_hub(self):
"""Core use case. Verify that processing data from the hub works"""
with tempfile.TemporaryDirectory() as tmp_dir:
prepared_path = Path(tmp_dir) / "prepared"
cfg = DictDefault(
{
"tokenizer_config": "huggyllama/llama-7b",
"sequence_len": 1024,
"datasets": [
{
"path": "mhenrichsen/alpaca_2k_test",
"type": "alpaca",
},
],
}
)
dataset, _ = load_tokenized_prepared_datasets(
self.tokenizer, cfg, prepared_path
)
assert len(dataset) == 2000
assert "input_ids" in dataset.features
assert "attention_mask" in dataset.features
assert "labels" in dataset.features
def test_load_local_hub(self):
"""Niche use case. Verify that a local copy of a hub dataset can be loaded"""
with tempfile.TemporaryDirectory() as tmp_dir:
tmp_ds_path = Path("mhenrichsen/alpaca_2k_test")
tmp_ds_path.mkdir(parents=True, exist_ok=True)
snapshot_download(
repo_id="mhenrichsen/alpaca_2k_test",
repo_type="dataset",
local_dir=tmp_ds_path,
)
prepared_path = Path(tmp_dir) / "prepared"
# Right now a local copy that doesn't fully conform to a dataset
# must list data_files and ds_type otherwise the loader won't know
# how to load it.
cfg = DictDefault(
{
"tokenizer_config": "huggyllama/llama-7b",
"sequence_len": 1024,
"datasets": [
{
"path": "mhenrichsen/alpaca_2k_test",
"ds_type": "parquet",
"type": "alpaca",
"data_files": [
"mhenrichsen/alpaca_2k_test/alpaca_2000.parquet",
],
},
],
}
)
dataset, _ = load_tokenized_prepared_datasets(
self.tokenizer, cfg, prepared_path
)
assert len(dataset) == 2000
assert "input_ids" in dataset.features
assert "attention_mask" in dataset.features
assert "labels" in dataset.features
shutil.rmtree(tmp_ds_path)
def test_load_from_save_to_disk(self):
"""Usual use case. Verify datasets saved via `save_to_disk` can be loaded."""
with tempfile.TemporaryDirectory() as tmp_dir:
tmp_ds_name = Path(tmp_dir) / "tmp_dataset"
self.dataset.save_to_disk(tmp_ds_name)
prepared_path = Path(tmp_dir) / "prepared"
cfg = DictDefault(
{
"tokenizer_config": "huggyllama/llama-7b",
"sequence_len": 256,
"datasets": [
{
"path": str(tmp_ds_name),
"type": "alpaca",
},
],
}
)
dataset, _ = load_tokenized_prepared_datasets(
self.tokenizer, cfg, prepared_path
)
assert len(dataset) == 1
assert "input_ids" in dataset.features
assert "attention_mask" in dataset.features
assert "labels" in dataset.features
def test_load_from_dir_of_parquet(self):
"""Usual use case. Verify a directory of parquet files can be loaded."""
with tempfile.TemporaryDirectory() as tmp_dir:
tmp_ds_dir = Path(tmp_dir) / "tmp_dataset"
tmp_ds_dir.mkdir()
tmp_ds_path = tmp_ds_dir / "shard1.parquet"
self.dataset.to_parquet(tmp_ds_path)
prepared_path: Path = Path(tmp_dir) / "prepared"
cfg = DictDefault(
{
"tokenizer_config": "huggyllama/llama-7b",
"sequence_len": 256,
"datasets": [
{
"path": str(tmp_ds_dir),
"ds_type": "parquet",
"name": "test_data",
"data_files": [
str(tmp_ds_path),
],
"type": "alpaca",
},
],
}
)
dataset, _ = load_tokenized_prepared_datasets(
self.tokenizer, cfg, prepared_path
)
assert len(dataset) == 1
assert "input_ids" in dataset.features
assert "attention_mask" in dataset.features
assert "labels" in dataset.features
def test_load_from_dir_of_json(self):
"""Standard use case. Verify a directory of json files can be loaded."""
with tempfile.TemporaryDirectory() as tmp_dir:
tmp_ds_dir = Path(tmp_dir) / "tmp_dataset"
tmp_ds_dir.mkdir()
tmp_ds_path = tmp_ds_dir / "shard1.json"
self.dataset.to_json(tmp_ds_path)
prepared_path: Path = Path(tmp_dir) / "prepared"
cfg = DictDefault(
{
"tokenizer_config": "huggyllama/llama-7b",
"sequence_len": 256,
"datasets": [
{
"path": str(tmp_ds_dir),
"ds_type": "json",
"name": "test_data",
"data_files": [
str(tmp_ds_path),
],
"type": "alpaca",
},
],
}
)
dataset, _ = load_tokenized_prepared_datasets(
self.tokenizer, cfg, prepared_path
)
assert len(dataset) == 1
assert "input_ids" in dataset.features
assert "attention_mask" in dataset.features
assert "labels" in dataset.features
def test_load_from_single_parquet(self):
"""Standard use case. Verify a single parquet file can be loaded."""
with tempfile.TemporaryDirectory() as tmp_dir:
tmp_ds_path = Path(tmp_dir) / "tmp_dataset.parquet"
self.dataset.to_parquet(tmp_ds_path)
prepared_path: Path = Path(tmp_dir) / "prepared"
cfg = DictDefault(
{
"tokenizer_config": "huggyllama/llama-7b",
"sequence_len": 256,
"datasets": [
{
"path": str(tmp_ds_path),
"name": "test_data",
"type": "alpaca",
},
],
}
)
dataset, _ = load_tokenized_prepared_datasets(
self.tokenizer, cfg, prepared_path
)
assert len(dataset) == 1
assert "input_ids" in dataset.features
assert "attention_mask" in dataset.features
assert "labels" in dataset.features
def test_load_from_single_json(self):
"""Standard use case. Verify a single json file can be loaded."""
with tempfile.TemporaryDirectory() as tmp_dir:
tmp_ds_path = Path(tmp_dir) / "tmp_dataset.json"
self.dataset.to_json(tmp_ds_path)
prepared_path: Path = Path(tmp_dir) / "prepared"
cfg = DictDefault(
{
"tokenizer_config": "huggyllama/llama-7b",
"sequence_len": 256,
"datasets": [
{
"path": str(tmp_ds_path),
"name": "test_data",
"type": "alpaca",
},
],
}
)
dataset, _ = load_tokenized_prepared_datasets(
self.tokenizer, cfg, prepared_path
)
assert len(dataset) == 1
assert "input_ids" in dataset.features
assert "attention_mask" in dataset.features
assert "labels" in dataset.features
if __name__ == "__main__":
unittest.main()