"""Module containing PromptTokenizingStrategy and Prompter classes""" import abc import copy import functools import logging from typing import Dict, List, Tuple, Union from fastchat.conversation import Conversation from transformers import BatchEncoding, PreTrainedTokenizer from axolotl.monkeypatch.fastchat_conversation_turns import ( add_get_turns_to_conversation, ) from axolotl.prompters import IGNORE_TOKEN_ID LOG = logging.getLogger("axolotl") IGNORE_INDEX = -100 LLAMA_DEFAULT_PAD_TOKEN = "" # nosec LLAMA_DEFAULT_EOS_TOKEN = "" # nosec LLAMA_DEFAULT_BOS_TOKEN = "" # nosec LLAMA_DEFAULT_UNK_TOKEN = "" # nosec add_get_turns_to_conversation() class InvalidDataException(Exception): """ Exception raised when the data is invalid """ class PromptTokenizingStrategy(abc.ABC): """ Abstract class for tokenizing strategies """ def __init__( self, prompter, tokenizer, train_on_inputs: bool = False, sequence_len: int = 2048, ): self.prompter = prompter self.tokenizer: PreTrainedTokenizer = tokenizer self.train_on_inputs = train_on_inputs self.sequence_len = sequence_len self.max_length = sequence_len @abc.abstractmethod def tokenize_prompt(self, prompt): pass @property def supports_batched(self): return False @functools.lru_cache(maxsize=128) def _get_user_token(self): try: id_or_ids = self.tokenizer.convert_tokens_to_ids("<|USER|>") if isinstance(id_or_ids, (int,)): return id_or_ids except KeyError: pass return False @functools.lru_cache(maxsize=128) def _get_assistant_token(self): try: id_or_ids = self.tokenizer.convert_tokens_to_ids("<|ASSISTANT|>") if isinstance(id_or_ids, (int,)): return id_or_ids except KeyError: pass return False def _tokenize( self, prompt: str, add_eos_token: bool = True, strip_bos_token: bool = False ) -> BatchEncoding: result: BatchEncoding if not prompt.strip(): LOG.warning("Empty text requested for tokenization.") result = BatchEncoding(data={"input_ids": [], "attention_mask": []}) else: result = self.tokenizer( prompt, truncation=True, max_length=self.max_length, padding=False, return_tensors=None, ) if len(result["input_ids"]) == 0: LOG.warning("Tokenizer result is empty. You may want to audit your dataset") if ( len(result["input_ids"]) > 0 and result["input_ids"][-1] != self.tokenizer.eos_token_id and len(result["input_ids"]) < self.max_length and add_eos_token ): result["input_ids"].append(self.tokenizer.eos_token_id) result["attention_mask"].append(1) if ( len(result["input_ids"]) > 0 and result["input_ids"][0] == self.tokenizer.bos_token_id and strip_bos_token ): result["input_ids"] = result["input_ids"][1:] result["attention_mask"] = result["attention_mask"][1:] result["labels"] = result["input_ids"].copy() return result class InstructionPromptTokenizingStrategy(PromptTokenizingStrategy): """ Tokenizing strategy for instruction-based prompts. """ def parse_instruction_fields( self, prompt ) -> Union[Tuple[str, str, str], Tuple[str, str, str, str]]: raise NotImplementedError def tokenize_prompt(self, prompt): ( instruction, input, # pylint: disable=redefined-builtin response, ) = self.parse_instruction_fields(prompt) user_prompt = next( iter( self.prompter.build_prompt( instruction, input, ) ) ) tokenized_prompt = self._tokenize(user_prompt, add_eos_token=False) if not self.train_on_inputs: user_prompt_len = len(tokenized_prompt["input_ids"]) # TODO this could be sped up using numpy array slicing tokenized_prompt["labels"] = [-100] * user_prompt_len tokenized_res_prompt = self._tokenize( response, strip_bos_token=True, add_eos_token=True ) tokenized_prompt["input_ids"] += tokenized_res_prompt["input_ids"] tokenized_prompt["attention_mask"] += tokenized_res_prompt["attention_mask"] tokenized_prompt["labels"] += tokenized_res_prompt["input_ids"] return tokenized_prompt def _build_full_prompt( self, instruction, input, response # pylint: disable=redefined-builtin ): return next( iter( self.prompter.build_prompt( instruction, input, response, ) ) ) class AlpacaPromptTokenizingStrategy(InstructionPromptTokenizingStrategy): """ Tokenizing strategy for Alpaca prompts. """ def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]: return ( prompt["instruction"], prompt["input"] if "input" in prompt else "", prompt["output"], ) class AlpacaMultipleChoicePromptTokenizingStrategy(InstructionPromptTokenizingStrategy): """ Tokenizing strategy for Alpaca Multiple Choice prompts. """ def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]: return ( prompt["question"], "\n".join(f'- "{choice}"' for choice in prompt["choices"]), prompt["solution"] if "solution" in prompt else prompt["explanation"], ) class JeopardyPromptTokenizingStrategy(InstructionPromptTokenizingStrategy): """ Tokenizing strategy for Jeopardy prompts. """ def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]: return ( prompt["question"], prompt["category"], "what is " + prompt["answer"], ) class OpenAssistantPromptTokenizingStrategy(InstructionPromptTokenizingStrategy): """ Tokenizing strategy for OpenAssistant prompts. """ def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]: return ( prompt["INSTRUCTION"], "", prompt["RESPONSE"], ) class SummarizeTLDRPromptTokenizingStrategy(InstructionPromptTokenizingStrategy): """ Tokenizing strategy for SummarizeTLDR prompts. """ def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]: return ( prompt["article"], "", prompt["summary"], ) class GPTeacherPromptTokenizingStrategy(InstructionPromptTokenizingStrategy): """ Tokenizing strategy for GPTeacher prompts. """ def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]: return ( prompt["instruction"], prompt["input"] if "input" in prompt else "", prompt["response"], ) class NomicGPT4AllPromptTokenizingStrategy(InstructionPromptTokenizingStrategy): """ Tokenizing strategy for NomicGPT4All prompts. """ def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]: return ( prompt["prompt"], "", prompt["response"], ) class ReflectionPromptTokenizingStrategy(PromptTokenizingStrategy): """ Tokenizing strategy for Reflection prompts. """ def parse_instruction_fields(self, prompt) -> Tuple[str, str, str, str, str]: raise NotImplementedError def tokenize_prompt(self, prompt): ( instruction, input, # pylint: disable=redefined-builtin output, reflection, corrected, ) = self.parse_instruction_fields(prompt) full_prompt = self._build_full_prompt( instruction, input, output, reflection, corrected ) tokenized_full_prompt = self._tokenize(full_prompt) if not self.train_on_inputs: user_prompt = next( iter( self.prompter.build_prompt( instruction, input, ) ) ) tokenized_user_prompt = self._tokenize(user_prompt, add_eos_token=False) user_prompt_len = len(tokenized_user_prompt["input_ids"]) # TODO this could be sped up using numpy array slicing tokenized_full_prompt["labels"] = [ -100 ] * user_prompt_len + tokenized_full_prompt["labels"][user_prompt_len:] return tokenized_full_prompt def _build_full_prompt( self, instruction, input, output, reflection, corrected ): # pylint: disable=redefined-builtin return next( iter( self.prompter.build_prompt( instruction, input, output, reflection, corrected, ) ) ) def _tokenize(self, prompt, add_eos_token=True, strip_bos_token=False): result = self.tokenizer( prompt, truncation=True, max_length=self.sequence_len, padding=False, return_tensors=None, ) if ( result["input_ids"][-1] != self.tokenizer.eos_token_id and len(result["input_ids"]) < self.sequence_len and add_eos_token ): result["input_ids"].append(self.tokenizer.eos_token_id) result["attention_mask"].append(1) result["labels"] = result["input_ids"].copy() return result class AlpacaReflectionPTStrategy(ReflectionPromptTokenizingStrategy): """ Tokenizing strategy for Alpaca Reflection prompts. """ def parse_instruction_fields(self, prompt) -> Tuple[str, str, str, str, str]: return ( prompt["instruction"], prompt["input"] if "input" in prompt else "", prompt["output"], prompt["reflection"], prompt["corrected"], ) class ShareGPTPromptTokenizingStrategy(PromptTokenizingStrategy): """ Tokenizing strategy for ShareGPT prompts. """ def get_conversation_thread(self, prompt): return prompt["conversations"] def tokenize_prompt(self, prompt): result, current_len = tokenize_prompt_default() user_token = self._get_user_token() assistant_token = self._get_assistant_token() conversation: Conversation = ( self.prompter._conversation # pylint: disable=protected-access ) try: for _, part in enumerate( self.prompter.build_prompt(self.get_conversation_thread(prompt)) ): if isinstance(part, tuple): if conversation.roles[0] in part[0]: turn = part[0] + part[1] if not user_token else part[1] # this is still the user query, we should if not part[1].strip(): LOG.warning(f"user turn has empty text: {prompt}") res = self._tokenize( turn, add_eos_token=False, strip_bos_token=True, ) if user_token: res["input_ids"] = [user_token, *res["input_ids"]] # everything from this is masked out from the labels labels = [IGNORE_TOKEN_ID] * len(res["input_ids"]) elif conversation.roles[1] in part[0]: # TODO label assistant token/tokens w/ IGNORE_TOKEN_ID turn = part[0] + part[1] if not assistant_token else part[1] # this should be the assistant response, should end with an eos token if not part[1].strip(): LOG.warning(f"assistant turn has empty text: {prompt}") res = self._tokenize( turn, add_eos_token=True, strip_bos_token=True, ) if assistant_token: res["input_ids"] = [ assistant_token, *res["input_ids"], ] # not masked out from labels labels = copy.deepcopy(res["input_ids"]) elif part[0] == "": turn = part[1] # this is only ever the first part, should include the bos token and the user query res = self._tokenize( turn, add_eos_token=False, strip_bos_token=False ) # everything from this is masked out from the labels labels = [IGNORE_TOKEN_ID] * len(res["input_ids"]) else: LOG.warning(f"unhandled role: {part[0]}") continue # pylint: disable=duplicate-code result, current_len = parse_tokenized_to_result( result, current_len, res, labels, pad_token_id=self.tokenizer.pad_token_id, ) return result except (KeyError, AssertionError, IndexError) as err: raise InvalidDataException(str(err)) from err def _tokenize(self, prompt, add_eos_token=True, strip_bos_token=False): if not prompt.strip(): LOG.warning("Empty text requested for tokenization.") result = BatchEncoding(data={"input_ids": [], "attention_mask": []}) else: result = self.tokenizer( prompt, truncation=True, max_length=self.sequence_len, padding=False, return_tensors=None, ) if ( len(result["input_ids"]) > 0 and result["input_ids"][-1] != self.tokenizer.eos_token_id and len(result["input_ids"]) < self.sequence_len and add_eos_token ): result["input_ids"].append(self.tokenizer.eos_token_id) result["attention_mask"].append(1) if ( len(result["input_ids"]) > 0 and result["input_ids"][0] == self.tokenizer.bos_token_id and strip_bos_token ): result["input_ids"] = result["input_ids"][1:] result["attention_mask"] = result["attention_mask"][1:] result["labels"] = result["input_ids"].copy() return result def tokenize_prompt_default() -> Tuple[Dict[str, List[int]], int]: """ Returns the default values for the tokenize prompt function """ result: Dict[str, List[int]] = { "input_ids": [], "attention_mask": [], "labels": [], } current_len = 0 return result, current_len def parse_tokenized_to_result( result: Dict[str, List[int]], current_len: int, res: Dict[str, List[int]], labels: List[int], pad_token_id: Union[int, None] = None, ) -> Tuple[Dict[str, List[int]], int]: """ Parses the tokenized prompt and append the tokenized input_ids, attention_mask and labels to the result """ input_ids = res["input_ids"] input_len = len(input_ids) result["input_ids"][current_len : current_len + input_len] = input_ids result["attention_mask"][current_len : current_len + input_len] = [ 1 if x != pad_token_id else 0 for x in input_ids ] result["labels"][current_len : current_len + input_len] = labels current_len += input_len return result, current_len