"""Module for working with config dicts""" import logging import os import torch from transformers.utils import is_torch_bf16_gpu_available from axolotl.utils.bench import log_gpu_memory_usage from axolotl.utils.models import load_model_config LOG = logging.getLogger("axolotl") def choose_device(cfg): def get_device(): try: if torch.cuda.is_available(): return f"cuda:{cfg.local_rank}" if torch.backends.mps.is_available(): return "mps" raise SystemError("No CUDA/mps device found") except Exception: # pylint: disable=broad-exception-caught return "cpu" cfg.device = get_device() if cfg.world_size == 1: cfg.device_map = "auto" else: if cfg.device.startswith("cuda"): cfg.device_map = {"": torch.cuda.current_device()} else: cfg.device_map = {"": cfg.device} # in `accelerate launch`, we need to not pass through any device map and let # accelerate figure out which parts of the model to put on which gpu accelerate_vars = [var for var in os.environ if var.startswith("ACCELERATE_USE_")] if accelerate_vars: cfg.device_map = None def normalize_config(cfg): # setup some derived config / hyperparams cfg.gradient_accumulation_steps = cfg.gradient_accumulation_steps or ( cfg.batch_size // cfg.micro_batch_size ) cfg.batch_size = ( cfg.batch_size or cfg.micro_batch_size * cfg.gradient_accumulation_steps ) cfg.world_size = int(os.environ.get("WORLD_SIZE", 1)) cfg.local_rank = int(os.environ.get("LOCAL_RANK", 0)) cfg.eval_table_size = cfg.eval_table_size or 0 cfg.eval_table_max_new_tokens = cfg.eval_table_max_new_tokens or 128 choose_device(cfg) cfg.ddp = cfg.ddp if cfg.ddp is not None else cfg.world_size != 1 if cfg.ddp: cfg.device_map = {"": int(os.environ.get("LOCAL_RANK", 0))} cfg.batch_size = cfg.batch_size * cfg.world_size if cfg.device == "mps": cfg.load_in_8bit = False cfg.tf32 = False if cfg.bf16: cfg.fp16 = True cfg.bf16 = False else: torch.backends.cuda.matmul.allow_tf32 = cfg.tf32 or False if cfg.bf16 or cfg.bfloat16: cfg.torch_dtype = torch.bfloat16 elif cfg.load_in_8bit or cfg.fp16 or cfg.float16: cfg.torch_dtype = torch.float16 else: cfg.torch_dtype = torch.float32 model_config = load_model_config(cfg) cfg.model_config_type = model_config.model_type # figure out if the model is llama cfg.is_llama_derived_model = ( (hasattr(model_config, "model_type") and model_config.model_type == "llama") or cfg.is_llama_derived_model or "llama" in cfg.base_model or (cfg.model_type and "llama" in cfg.model_type.lower()) ) # figure out if the model is falcon cfg.is_falcon_derived_model = ( ( hasattr(model_config, "model_type") and model_config.model_type in [ "falcon", "RefinedWebModel", "RefinedWeb", ] ) or cfg.is_falcon_derived_model or "falcon" in cfg.base_model or (cfg.model_type and "rwforcausallm" in cfg.model_type.lower()) ) log_gpu_memory_usage(LOG, "baseline", cfg.device) def validate_config(cfg): if is_torch_bf16_gpu_available(): if not cfg.bf16 and not cfg.bfloat16: LOG.info("bf16 support detected, but not enabled for this configuration.") else: if not cfg.merge_lora and (cfg.bf16 or cfg.bfloat16): raise ValueError( "bf16 requested, but AMP is not supported on this GPU. Requires Ampere series or above." ) if cfg.max_packed_sequence_len and cfg.sample_packing: raise ValueError( "please set only one of max_packed_sequence_len (deprecated soon) or sample_packing" ) if cfg.max_packed_sequence_len: LOG.warning( str( PendingDeprecationWarning( "max_packed_sequence_len will be deprecated in favor of sample_packing" ) ) ) if cfg.sample_packing and not cfg.pad_to_sequence_len: LOG.warning( "`pad_to_sequence_len: true` is recommended when using sample_packing" ) if cfg.gradient_accumulation_steps and cfg.batch_size: raise ValueError( "please set only one of gradient_accumulation_steps or batch_size" ) if cfg.batch_size: LOG.warning( "%s\n%s", "batch_size is not recommended. Please use gradient_accumulation_steps instead.", "To calculate the equivalent gradient_accumulation_steps, divide batch_size / micro_batch_size / number of gpus.", ) if cfg.load_4bit: raise ValueError("cfg.load_4bit parameter has been deprecated") if cfg.adapter == "qlora": if cfg.merge_lora: # can't merge qlora if loaded in 8bit or 4bit if cfg.load_in_8bit: raise ValueError("Can't merge qlora if loaded in 8bit") if cfg.gptq: raise ValueError("Can't merge qlora if gptq") if cfg.load_in_4bit: raise ValueError("Can't merge qlora if loaded in 4bit") else: if cfg.load_in_8bit: raise ValueError("Can't load qlora in 8bit") if cfg.gptq: raise ValueError("Can't load qlora if gptq") if not cfg.load_in_4bit: raise ValueError("Require cfg.load_in_4bit to be True for qlora") if not cfg.load_in_8bit and cfg.adapter == "lora": LOG.warning("We recommend setting `load_in_8bit: true` for LORA finetuning") if cfg.relora_steps: if cfg.adapter not in ("lora", "qlora"): raise ValueError("cfg.adapter must be lora or qlora to use ReLoRA") if cfg.fsdp: raise ValueError("fsdp not supported with ReLoRA") if cfg.deepspeed: raise ValueError("deepspeed not supported with ReLoRA") if cfg.lr_scheduler == "one_cycle": raise ValueError("ReLoRA is not compatible with the one_cycle scheduler") if cfg.trust_remote_code: LOG.warning( "`trust_remote_code` is set to true. Please make sure that you reviewed the remote code/model." ) if cfg.push_dataset_to_hub and cfg.hf_use_auth_token is not True: raise ValueError( "Require cfg.hf_use_auth_token to be True for push_dataset_to_hub" ) if (cfg.base_model and "falcon" in cfg.base_model.lower()) and cfg.fsdp: raise ValueError("FSDP is not supported for falcon models") if ( cfg.base_model and "mpt" in cfg.base_model.lower() ) and cfg.gradient_checkpointing: raise ValueError("gradient_checkpointing is not supported for MPT models") if cfg.flash_optimum is True: if cfg.adapter: LOG.warning("BetterTransformers probably doesn't work with PEFT adapters") if cfg.fp16 or cfg.bf16: raise ValueError("AMP is not supported with BetterTransformer") if cfg.float16 is not True and cfg.bloat16 is not True: LOG.warning( "You should probably set bfloat16 or float16 to true to " "load the model in float16 for BetterTransformers" ) if int(torch.__version__.split(".", maxsplit=1)[0]) < 2: LOG.warning("torch>=2.0.0 required") raise ValueError( f"flash_optimum for BetterTransformers may not be used with {torch.__version__}" ) if cfg.pretraining_dataset and cfg.group_by_length: LOG.warning( "You probably want to disable group_by_length as it will force a streamed dataset to download completely." ) if cfg.pretraining_dataset and not cfg.max_steps: raise ValueError( "max_steps must be set when using iterable pretraining_dataset, Trainer can't infer length and schedule optimizer/learning rate without it!" ) if any([cfg.adam_beta1, cfg.adam_beta2, cfg.adam_epsilon]) and ( not cfg.optimizer or "adamw" not in cfg.optimizer ): LOG.warning("adamw hyperparameters found, but no adamw optimizer set") if cfg.push_to_hub_model_id: raise ValueError( "push_to_hub_model_id is deprecated. Please use hub_model_id instead." ) if cfg.gptq and cfg.model_revision: raise ValueError( "model_revision is not supported for GPTQ models. " + "Please download the model from HuggingFace Hub manually for correct branch, " + "point to its path, and remove model_revision from the config." ) if cfg.sample_packing and cfg.sdp_attention: # incompatible due to bug w/ accelerate causing 0.0 loss when using llama2 raise ValueError( "sample_packing not compatible with sdp_attention. Use flash_attention" ) if cfg.sample_packing and cfg.xformers_attention: raise ValueError( "sample_packing not compatible with xformers_attention. Use flash_attention" ) if cfg.early_stopping_patience: if not cfg.save_steps or not cfg.eval_steps: raise ValueError( "`early_stopping_patience` requires save_steps and eval_steps to be set. eval_steps should evenly divide save_steps." ) if cfg.save_steps % cfg.eval_steps != 0: raise ValueError( "`early_stopping_patience` requires that eval_steps should evenly divide save_steps." ) if cfg.model_type == "MixFormerSequentialForCausalLM" and cfg.adapter is not None: LOG.warning("Use AutoModelForCausalLM for phi/MixFormer models with qLoRA") if cfg.model_config_type == "mixformer-sequential": if cfg.sample_packing: if cfg.adapter is not None: LOG.warning( "phi/MixFormer models are not currently compatible with LoRA and sample_packing" ) if cfg.model_type == "AutoModelForCausalLM": raise ValueError( "`model_type: MixFormerSequentialForCausalLM` required for sample_packing" ) if cfg.datasets: for idx, ds_cfg in enumerate(cfg.datasets): if ds_cfg.type == "sharegpt:chat": LOG.warning( PendingDeprecationWarning( "`type: sharegpt:chat` will soon be deprecated. simply use `type: sharegpt` instead." ) ) cfg.datasets[idx].type = "sharegpt" if "sharegpt_simple" in ds_cfg.type: LOG.warning( PendingDeprecationWarning( "`type: sharegpt_simple` will soon be deprecated. simply use `type: sharegpt` instead." ) ) cfg.datasets[idx].type = cfg.datasets[idx].type.replace( "sharegpt_simple", "sharegpt" ) # TODO # MPT 7b # https://github.com/facebookresearch/bitsandbytes/issues/25 # no 8bit adaAmw w bf16 # GPT-NeoX # evals broken when extending context len # File "/root/miniconda3/envs/py3.9/lib/python3.9/site-packages/transformers/models/gpt_neox/modeling_gpt_neox.py", line 162, in forward attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) # File "/root/miniconda3/envs/py3.9/lib/python3.9/site-packages/optimum/bettertransformer/models/attention.py", line 74, in gpt2_wrapped_scaled_dot_product # attention_mask = causal_mask + attention_mask # RuntimeError: The size of tensor a (2048) must match the size of tensor b (8132) at non-singleton dimension 3