## Axolotl supports
| | fp16/fp32 | fp16/fp32 w/ lora | qlora | 4bit-quant | 4bit-quant w/flash attention | flash attention | xformers attention |
|---------|:----------|:------------------|------|------------|------------------------------|-----------------|--------------------|
| llama | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| Pythia | ✅ | ✅ | ❓ | ❌ | ❌ | ❌ | ❓ |
| cerebras | ✅ | ✅ | ❓ | ❌ | ❌ | ❌ | ❓ |
| mpt | ✅ | ❌ | ❓ | ❌ | ❌ | ❌ | ❓ |
| falcon | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❓ |
## Quickstart ⚡
**Requirements**: Python 3.9 and Pytorch 2.0.
```bash
git clone https://github.com/OpenAccess-AI-Collective/axolotl
pip3 install -e .
pip3 install -U git+https://github.com/huggingface/peft.git
accelerate config
# finetune lora
accelerate launch scripts/finetune.py examples/lora-openllama-3b/config.yml
# inference
accelerate launch scripts/finetune.py examples/lora-openllama-3b/config.yml \
--inference --lora_model_dir="./lora-out"
```
## Installation
### Environment
- Docker
```bash
docker run --gpus '"all"' --rm -it winglian/axolotl:main-py3.9-cu118-2.0.0
```
- `winglian/axolotl-runpod:main-py3.9-cu118-2.0.0`: for runpod
- `winglian/axolotl-runpod:main-py3.9-cu118-2.0.0-gptq`: for gptq
- `winglian/axolotl:dev`: dev branch (not usually up to date)
Or run on the current files for development:
```sh
docker compose up -d
```
- Conda/Pip venv
1. Install python **3.9**
2. Install pytorch stable https://pytorch.org/get-started/locally/
3. Install python dependencies with ONE of the following:
- Recommended, supports QLoRA, NO gptq/int4 support
```bash
pip3 install -e .
pip3 install -U git+https://github.com/huggingface/peft.git
```
- gptq/int4 support, NO QLoRA
```bash
pip3 install -e .[gptq]
```
- same as above but not recommended
```bash
pip3 install -e .[gptq_triton]
```
- LambdaLabs
Click to Expand
1. Install python
```bash
sudo apt update
sudo apt install -y python3.9
sudo update-alternatives --install /usr/bin/python python /usr/bin/python3.9 1
sudo update-alternatives --config python # pick 3.9 if given option
python -V # should be 3.9
```
2. Install pip
```bash
wget https://bootstrap.pypa.io/get-pip.py
python get-pip.py
```
3. Install torch
```bash
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
```
4. Axolotl
```bash
git clone https://github.com/OpenAccess-AI-Collective/axolotl
cd axolotl
pip3 install -e . # change depend on needs
pip3 install protobuf==3.20.3
pip3 install -U requests
pip3 install -U --ignore-installed psutil
pip3 install -U scipy
pip3 install git+https://github.com/huggingface/peft.git # not for gptq
```
5. Set path
```bash
export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH
```
### Dataset
Have dataset(s) in one of the following format (JSONL recommended):
- `alpaca`: instruction; input(optional)
```json
{"instruction": "...", "input": "...", "output": "..."}
```
- `sharegpt`: conversations
```json
{"conversations": [{"from": "...", "value": "..."}]}
```
- `completion`: raw corpus
```json
{"text": "..."}
```
See other formats
- `jeopardy`: question and answer
```json
{"question": "...", "category": "...", "answer": "..."}
```
- `oasst`: instruction
```json
{"INSTRUCTION": "...", "RESPONSE": "..."}
```
- `gpteacher`: instruction; input(optional)
```json
{"instruction": "...", "input": "...", "response": "..."}
```
- `reflection`: instruction with reflect; input(optional)
```json
{"instruction": "...", "input": "...", "output": "...", "reflection": "...", "corrected": "..."}
```
- `explainchoice`: question, choices, (solution OR explanation)
```json
{"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."}
```
- `concisechoice`: question, choices, (solution OR explanation)
```json
{"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."}
```
- `summarizetldr`: article and summary
```json
{"article": "...", "summary": "..."}
```
- `alpaca_chat`: basic instruct for alpaca chat
```json
{"instruction": "...", "input": "...", "response": "..."}
```
- `alpaca_chat.load_qa`: question and answer for alpaca chat
```json
{"question": "...", "answer": "..."}
```
- `alpaca_chat.load_concise`: question and answer for alpaca chat, for concise answers
```json
{"instruction": "...", "input": "...", "response": "..."}
```
- `alpaca_chat.load_camel_ai`: question and answer for alpaca chat, for load_camel_ai
```json
{"message_1": "...", "message_2": "..."}
```
- `context_qa`: in context question answering from an article
```json
{"article": "...", "question": "...", "answer": "..."}
```
- `context_qa.load_404`: in context question answering from an article, with default response for no answer from context
```json
{"article": "...", "unanswerable_question": "..."}
```
- `creative_acr.load_answer`: instruction and revision
```json
{"instruction": "...", "revision": "..."}
```
- `creative_acr.load_critique`: critique
```json
{"scores": "...", "critiques": "...", "instruction": "...", "answer": "..."}
```
- `creative_acr.load_revise`: critique and revise
```json
{"scores": "...", "critiques": "...", "instruction": "...", "answer": "...", "revision": "..."}
```
- `pygmalion`: pygmalion
```json
{"conversations": [{"role": "...", "value": "..."}]}
```
#### How to add custom prompts
1. Add your method to a file in [prompt_strategies](src/axolotl/prompt_strategies). Please see other files as example.
2. Use your custom file name as the dataset type.
Optionally, download some datasets, see [data/README.md](data/README.md)
### Config
See sample configs in [configs](configs) folder or [examples](examples) for quick start. It is recommended to duplicate and modify to your needs. The most important options are:
- model
```yaml
base_model: ./llama-7b-hf # local or huggingface repo
```
Note: The code will load the right architecture.
- dataset
```yaml
datasets:
- path: vicgalle/alpaca-gpt4 # local or huggingface repo
type: alpaca # format from earlier
sequence_len: 2048 # max token length / prompt
```
- loading
```yaml
load_in_4bit: true
load_in_8bit: true
bf16: true # require >=ampere
fp16: true
tf32: true # require >=ampere
```
Note: Repo does not do 4-bit quantization.
- lora
```yaml
adapter: lora # qlora or leave blank for full finetune
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
- q_proj
- v_proj
```
All yaml options
```yaml
# this is the huggingface model that contains *.pt, *.safetensors, or *.bin files
# this can also be a relative path to a model on disk
base_model: ./llama-7b-hf
# you can specify an ignore pattern if the model repo contains more than 1 model type (*.pt, etc)
base_model_ignore_patterns:
# if the base_model repo on hf hub doesn't include configuration .json files,
# you can set that here, or leave this empty to default to base_model
base_model_config: ./llama-7b-hf
# Optional tokenizer configuration override in case you want to use a different tokenizer
# than the one defined in the base model
tokenizer_config:
# If you want to specify the type of model to load, AutoModelForCausalLM is a good choice too
model_type: AutoModelForCausalLM
# Corresponding tokenizer for the model AutoTokenizer is a good choice
tokenizer_type: AutoTokenizer
# Trust remote code for untrusted source
trust_remote_code:
# whether you are training a 4-bit GPTQ quantized model
gptq: true
gptq_groupsize: 128 # group size
gptq_model_v1: false # v1 or v2
# this will attempt to quantize the model down to 8 bits and use adam 8 bit optimizer
load_in_8bit: true
# use bitsandbytes 4 bit
load_in_4bit:
# Use CUDA bf16
bf16: true # bool or 'full' for `bf16_full_eval`. require >=ampere
# Use CUDA fp16
fp16: true
# Use CUDA tf32
tf32: true # require >=ampere
# a list of one or more datasets to finetune the model with
datasets:
# this can be either a hf dataset, or relative path
- path: vicgalle/alpaca-gpt4
# The type of prompt to use for training. [alpaca, sharegpt, gpteacher, oasst, reflection]
type: alpaca # format OR format:prompt_style (chat/instruct)
data_files: # path to source data files
shards: # number of shards to split data into
# axolotl attempts to save the dataset as an arrow after packing the data together so
# subsequent training attempts load faster, relative path
dataset_prepared_path: data/last_run_prepared
# push prepared dataset to hub
push_dataset_to_hub: # repo path
# whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets
# required to be true when used in combination with `push_dataset_to_hub`
hf_use_auth_token: # boolean
# How much of the dataset to set aside as evaluation. 1 = 100%, 0.50 = 50%, etc
val_set_size: 0.04
# Num shards for whole dataset
dataset_shard_num:
# Index of shard to use for whole dataset
dataset_shard_idx:
# the maximum length of an input to train with, this should typically be less than 2048
# as most models have a token/context limit of 2048
sequence_len: 2048
# max sequence length to concatenate training samples together up to
# inspired by StackLLaMA. see https://huggingface.co/blog/stackllama#supervised-fine-tuning
max_packed_sequence_len: 1024
# if you want to use 'lora' or 'qlora' or leave blank to train all parameters in original model
adapter: lora
# if you already have a lora model trained that you want to load, put that here
# lora hyperparameters
lora_model_dir:
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
- q_proj
- v_proj
# - k_proj
# - o_proj
# - gate_proj
# - down_proj
# - up_proj
lora_target_linear: # if true, will target all linear layers
lora_modules_to_save:
# - embed_tokens
# - lm_head
lora_out_dir:
lora_fan_in_fan_out: false
# wandb configuration if you're using it
wandb_mode:
wandb_project:
wandb_watch:
wandb_run_id:
wandb_log_model: # 'checkpoint'
# where to save the finished model to
output_dir: ./completed-model
# training hyperparameters
gradient_accumulation_steps: 1
micro_batch_size: 2
eval_batch_size: 2
num_epochs: 3
warmup_steps: 100
learning_rate: 0.00003
logging_steps:
# whether to mask out or include the human's prompt from the training labels
train_on_inputs: false
# don't use this, leads to wonky training (according to someone on the internet)
group_by_length: false
# Whether to use gradient checkpointing https://huggingface.co/docs/transformers/v4.18.0/en/performance#gradient-checkpointing
gradient_checkpointing: false
# stop training after this many evaluation losses have increased in a row
# https://huggingface.co/transformers/v4.2.2/_modules/transformers/trainer_callback.html#EarlyStoppingCallback
early_stopping_patience: 3
# specify a scheduler and kwargs to use with the optimizer
lr_scheduler: # 'one_cycle' | 'log_sweep' | empty for cosine
lr_scheduler_kwargs:
# for one_cycle optim
lr_div_factor: # learning rate div factor
# for log_sweep optim
log_sweep_min_lr:
log_sweep_max_lr:
# specify optimizer
optimizer:
# specify weight decay
weight_decay:
# whether to use xformers attention patch https://github.com/facebookresearch/xformers:
xformers_attention:
# whether to use flash attention patch https://github.com/HazyResearch/flash-attention:
flash_attention: # require a100 for llama
# whether to use scaled-dot-product attention
# https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
sdp_attention:
# Landmark attention (only llama)
landmark_attention:
# xpos RoPE see https://github.com/kaiokendev/cutoff-len-is-context-len/blob/main/util/xpos_rope_llama_monkey_patch.py
# llama only
xpos_rope:
# resume from a specific checkpoint dir
resume_from_checkpoint:
# if resume_from_checkpoint isn't set and you simply want it to start where it left off
# be careful with this being turned on between different models
auto_resume_from_checkpoints: false
# don't mess with this, it's here for accelerate and torchrun
local_rank:
# add or change special tokens
special_tokens:
# bos_token: ""
# eos_token: ""
# unk_token: ""
# add extra tokens
tokens:
# FSDP
fsdp:
fsdp_config:
# Deepspeed
deepspeed:
# Path to torch distx for optim 'adamw_anyprecision'
torchdistx_path:
# Set padding for data collator to 'longest'
collator_pad_to_longest:
# Debug mode
debug:
# Seed
seed:
# Allow overwrite yml config using from cli
strict:
```
### Accelerate
Configure accelerate
```bash
accelerate config
# Edit manually
# nano ~/.cache/huggingface/accelerate/default_config.yaml
```
### Train
Run
```bash
accelerate launch scripts/finetune.py configs/your_config.yml
```
### Inference
Pass the appropriate flag to the train command:
- Pretrained LORA:
```bash
--inference --lora_model_dir ./completed-model
```
- Full weights finetune:
```bash
--inference --base_model ./completed-model
```
- Full weights finetune w/ a prompt from a text file:
```bash
cat /tmp/prompt.txt | python scripts/finetune.py configs/your_config.yml \
--base_model ./completed-model --inference --prompter=None --load_in_8bit=True
```
### Merge LORA to base
Add below flag to train command above
```bash
--merge_lora --lora_model_dir="./completed-model" --load_in_8bit=False --load_in_4bit=False
```
## Common Errors 🧰
> Cuda out of memory
Please reduce any below
- `micro_batch_size`
- `eval_batch_size`
- `gradient_accumulation_steps`
- `sequence_len`
> RuntimeError: expected scalar type Float but found Half
Try set `fp16: true`
> NotImplementedError: No operator found for `memory_efficient_attention_forward` ...
Try to turn off xformers.
## Need help? 🙋♂️
Join our [Discord server](https://discord.gg/HhrNrHJPRb) where we can help you
## Badge ❤🏷️
Building something cool with Axolotl? Consider adding a badge to your model card.
```markdown
[](https://github.com/OpenAccess-AI-Collective/axolotl)
```
[](https://github.com/OpenAccess-AI-Collective/axolotl)
## Contributing 🤝
Bugs? Please check for open issue else create a new [Issue](https://github.com/OpenAccess-AI-Collective/axolotl/issues/new).
PRs are **greatly welcome**!
Please run below to setup env
```bash
pip3 install -r requirements-dev.txt -r requirements-tests.txt
pre-commit install
# test
pytest tests/
```