"""Flash attention monkey patch for llama model""" # copied from https://github.com/lm-sys/FastChat/blob/main/fastchat/train/llama_flash_attn_monkey_patch.py import logging import warnings from functools import partial from typing import List, Optional, Tuple, Union import torch import torch.nn.functional as F import transformers from einops import rearrange from flash_attn.bert_padding import pad_input, unpad_input from transformers.modeling_outputs import BaseModelOutputWithPast from transformers.models.llama.modeling_llama import LlamaAttention from transformers.models.llama.modeling_llama import ( LlamaDecoderLayer as OriginalLlamaDecoderLayer, ) from transformers.models.llama.modeling_llama import ( LlamaMLP, apply_rotary_pos_emb, repeat_kv, ) from xformers.ops import SwiGLU from axolotl.monkeypatch.utils import get_cu_seqlens_from_pos_ids, set_module_name try: from flash_attn.flash_attn_interface import ( # pylint: disable=ungrouped-imports flash_attn_kvpacked_func, flash_attn_varlen_kvpacked_func, flash_attn_varlen_qkvpacked_func, ) except ImportError: from flash_attn.flash_attn_interface import ( flash_attn_unpadded_kvpacked_func as flash_attn_varlen_kvpacked_func, ) from flash_attn.flash_attn_interface import ( flash_attn_unpadded_qkvpacked_func as flash_attn_varlen_qkvpacked_func, ) LOG = logging.getLogger("axolotl") def is_xformers_swiglu_available() -> bool: from xformers.ops.common import get_xformers_operator try: get_xformers_operator("swiglu_packedw")() return True except RuntimeError as exc: if "No such operator xformers::swiglu_packedw " in str(exc): return False return True def replace_llama_mlp_with_swiglu(model): for name, module in model.named_modules(): if isinstance(module, LlamaMLP): mlp = FusedMLP( module.config, module.gate_proj, module.up_proj, module.down_proj ) set_module_name(model, name, mlp) def replace_llama_qkv_with_fused(model): for name, module in model.named_modules(): if isinstance(module, LlamaAttention): qkv = FusedAttention( module.config, module.q_proj, module.k_proj, module.v_proj, module.o_proj, ) set_module_name(model, name, qkv) def replace_llama_attn_with_flash_attn( packed: Optional[bool] = False, cross_entropy: Optional[bool] = False, rms_norm: Optional[bool] = False, use_shifted_sparse_attn: Optional[bool] = False, ): transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = ( # pylint: disable=protected-access _prepare_decoder_attention_mask ) if use_shifted_sparse_attn: transformers.models.llama.modeling_llama.LlamaAttention.forward = ( flashattn_forward_with_s2attn ) else: transformers.models.llama.modeling_llama.LlamaAttention.forward = ( flashattn_forward ) if packed: transformers.models.llama.modeling_llama.LlamaDecoderLayer = LlamaDecoderLayer transformers.models.llama.modeling_llama.LlamaModel.forward = ( llama_model_forward ) # skip only if explicitly disabled if cross_entropy: try: from flash_attn.losses.cross_entropy import CrossEntropyLoss LOG.info("patching with flash_attn.losses.cross_entropy") transformers.models.llama.modeling_llama.CrossEntropyLoss = partial( CrossEntropyLoss, inplace_backward=True ) except ImportError: LOG.info( "optimized flash-attention CrossEntropyLoss not found (run `pip install 'git+https://github.com/Dao-AILab/flash-attention.git#egg=xentropy_cuda_lib&subdirectory=csrc/xentropy'`)" ) # skip only if explicitly disabled if rms_norm: try: from flash_attn.ops.rms_norm import RMSNorm class LlamaRMSNorm(RMSNorm): """Patched LLamaRMSNorm""" def __init__(self, hidden_size, eps=1e-6): super().__init__(hidden_size, eps=eps) LOG.info("patching with flash_attn.ops.rms_norm") transformers.models.llama.modeling_llama.LlamaRMSNorm = LlamaRMSNorm except ImportError: LOG.info( "optimized flash-attention RMSNorm not found (run `pip install 'git+https://github.com/Dao-AILab/flash-attention.git#egg=dropout_layer_norm&subdirectory=csrc/layer_norm'`)" ) class FusedAttention(LlamaAttention): """ Fused QKV Attention layer for incrementally improved training efficiency """ def __init__( self, config, q: torch.nn.Linear, # pylint: disable=invalid-name k: torch.nn.Linear, # pylint: disable=invalid-name v: torch.nn.Linear, # pylint: disable=invalid-name o: torch.nn.Linear, # pylint: disable=invalid-name ): super().__init__(config) self.config = config self.init_device = next(iter(q.state_dict().values())).device # define equivalent fused qkv projection self.out_features: List[int] = [q.out_features, k.out_features, v.out_features] self.qkv_proj = torch.nn.Linear( q.in_features, sum(self.out_features), device=self.init_device, bias=False ) self.o_proj = o # overwrite initialized weights with pretrained weights self.qkv_proj.weight.data = torch.cat( (q.weight.data, k.weight.data, v.weight.data), dim=0 ) def _post_training(self, model, name): q_proj, k_proj, v_proj = torch.split( self.qkv_proj.weight.data, self.out_features, dim=0 ) new_attn = LlamaAttention(self.config) new_attn.q_proj.weight.data = q_proj new_attn.k_proj.weight.data = k_proj new_attn.v_proj.weight.data = v_proj new_attn.o_proj.weight.data = self.o_proj.weight.data set_module_name(model, name, new_attn) class FusedMLP(torch.nn.Module): """ Fused MLP layer for incrementally improved training efficiency """ def __init__( self, config, gate_proj: torch.nn.Linear, up_proj: torch.nn.Linear, down_proj: torch.nn.Linear, ): super().__init__() self.config = config self.swiglu = SwiGLU( in_features=config.hidden_size, hidden_features=config.intermediate_size, bias=False, _pack_weights=True, ) # overwrite initialized weights with pretrained weights self.swiglu.w12.weight.data = torch.cat( (gate_proj.weight.data, up_proj.weight.data), dim=0 ) self.swiglu.w3.weight.data = down_proj.weight.data def _post_training(self, model, name): w1, w2 = torch.split( # pylint: disable=invalid-name self.swiglu.w12.weight.data, self.config.intermediate_size, dim=0 ) # Assign the split weights back to the original layers new_mlp = LlamaMLP(self.config) new_mlp.gate_proj.weight.data = w1 new_mlp.up_proj.weight.data = w2 new_mlp.down_proj.weight.data = self.swiglu.w3.weight.data set_module_name(model, name, new_mlp) def forward(self, x: torch.Tensor) -> torch.Tensor: # pylint: disable=invalid-name return self.swiglu(x) # Disable the transformation of the attention mask in LlamaModel as the flash attention # requires the attention mask to be the same as the key_padding_mask def _prepare_decoder_attention_mask( self, attention_mask, input_shape, inputs_embeds, past_key_values_length, ): # pylint: disable=unused-argument # [bsz, seq_len] return attention_mask GROUP_SIZE_RATIO = 1 / 4 def flashattn_forward_with_s2attn( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, padding_mask: Optional[torch.LongTensor] = None, # pylint: disable=unused-argument cu_seqlens: Optional[torch.Tensor] = None, # pylint: disable=unused-argument max_seqlen: Optional[torch.Tensor] = None, # pylint: disable=unused-argument ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel From: https://github.com/dvlab-research/LongLoRA/blob/main/llama_attn_replace.py attention_mask: [bsz, q_len] `cu_seqlens` will be ignored if provided `max_seqlen` will be ignored if provided """ if output_attentions: warnings.warn( "Output attentions is not supported for patched `LlamaAttention`, returning `None` instead." ) bsz, q_len, _ = hidden_states.size() query_states = ( self.q_proj(hidden_states) .view(bsz, q_len, self.num_heads, self.head_dim) .transpose(1, 2) ) key_states = ( self.k_proj(hidden_states) .view(bsz, q_len, self.num_key_value_heads, self.head_dim) .transpose(1, 2) ) value_states = ( self.v_proj(hidden_states) .view(bsz, q_len, self.num_key_value_heads, self.head_dim) .transpose(1, 2) ) # [bsz, q_len, nh, hd] # [bsz, nh, q_len, hd] # pylint: disable=duplicate-code kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] cos, sin = self.rotary_emb( value_states, seq_len=kv_seq_len, position_ids=position_ids ) query_states, key_states = apply_rotary_pos_emb( query_states, key_states, cos, sin, position_ids ) # Past Key value support if past_key_value is not None: # reuse k, v, self_attention key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) past_key_value = (key_states, value_states) if use_cache else None # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) # Flash attention codes from # https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/flash_attention.py # transform the data into the format required by flash attention qkv = torch.stack( [query_states, key_states, value_states], dim=2 ) # [bsz, nh, 3, q_len, hd] qkv = qkv.transpose(1, 3) # [bsz, q_len, 3, nh, hd] # We have disabled _prepare_decoder_attention_mask in LlamaModel # the attention_mask should be the same as the key_padding_mask key_padding_mask = attention_mask.repeat(2, 1) nheads = qkv.shape[-2] # shift group_size = int(q_len * GROUP_SIZE_RATIO) if q_len % group_size > 0: raise ValueError( f"q_len {q_len} should be divisible by group size {group_size}." ) qkv = ( qkv.reshape(bsz, q_len, 3, 2, self.num_heads // 2, self.head_dim) .permute(0, 3, 1, 2, 4, 5) .reshape(bsz * 2, q_len, 3, self.num_heads // 2, self.head_dim) ) x = rearrange( # pylint: disable=invalid-name qkv, "b s three h d -> b s (three h d)" ) x_unpad, indices, cu_q_lens, max_s = unpad_input(x, key_padding_mask) cu_q_len_tmp = torch.arange( 0, max_s, group_size, device=key_padding_mask.device, dtype=cu_q_lens.dtype ) cu_q_len_tmp = torch.stack([cu_q_len_tmp, cu_q_len_tmp + group_size // 2]).repeat( bsz, 1 ) + cu_q_lens[:-1].unsqueeze(-1) cu_q_lens = torch.cat([cu_q_len_tmp, cu_q_lens[1:].unsqueeze(-1)], dim=-1).view(-1) x_unpad = rearrange( x_unpad, "nnz (three h d) -> nnz three h d", three=3, h=nheads // 2 ) output_unpad = flash_attn_varlen_qkvpacked_func( x_unpad, cu_q_lens, group_size, 0.0, softmax_scale=None, causal=True ) output = rearrange( pad_input( rearrange(output_unpad, "nnz h d -> nnz (h d)"), indices, bsz * 2, q_len ), "b s (h d) -> b s h d", h=nheads // 2, ) output = ( output.reshape(bsz, 2, q_len, nheads // 2, self.head_dim) .transpose(1, 2) .reshape(bsz, q_len, nheads, self.head_dim) ) return self.o_proj(rearrange(output, "b s h d -> b s (h d)")), None, past_key_value def flashattn_forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, padding_mask: Optional[torch.LongTensor] = None, # pylint: disable=unused-argument cu_seqlens: Optional[torch.Tensor] = None, max_seqlen: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel attention_mask: [bsz, q_len] """ # pylint: disable=duplicate-code bsz, q_len, _ = hidden_states.size() if not hasattr(self, "pretraining_tp"): self.pretraining_tp = 1 if self.pretraining_tp > 1: key_value_slicing = ( self.num_key_value_heads * self.head_dim ) // self.pretraining_tp query_slices = self.q_proj.weight.split( (self.num_heads * self.head_dim) // self.pretraining_tp, dim=0 ) key_slices = self.k_proj.weight.split(key_value_slicing, dim=0) value_slices = self.v_proj.weight.split(key_value_slicing, dim=0) query_states = [ F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp) ] query_states = torch.cat(query_states, dim=-1) key_states = [ F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp) ] key_states = torch.cat(key_states, dim=-1) value_states = [ F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp) ] value_states = torch.cat(value_states, dim=-1) else: if isinstance(self, FusedAttention): query_states, key_states, value_states = self.qkv_proj(hidden_states).split( self.out_features, dim=-1 ) else: query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view( bsz, q_len, self.num_heads, self.head_dim ).transpose(1, 2) key_states = key_states.view( bsz, q_len, self.num_key_value_heads, self.head_dim ).transpose(1, 2) value_states = value_states.view( bsz, q_len, self.num_key_value_heads, self.head_dim ).transpose(1, 2) # [bsz, q_len, nh, hd] # [bsz, nh, q_len, hd] kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] cos, sin = self.rotary_emb( value_states, seq_len=kv_seq_len, position_ids=position_ids ) query_states, key_states = apply_rotary_pos_emb( query_states, key_states, cos, sin, position_ids ) # [bsz, nh, t, hd] if past_key_value is not None: # reuse k, v, self_attention key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) past_key_value = (key_states, value_states) if use_cache else None # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) if output_attentions: warnings.warn( "Output attentions is not supported for patched `LlamaAttention`, returning `None` instead." ) # # flash-attn v2 start # if self.training: # during training q,k,v always have same seqlen assert key_states.shape == query_states.shape is_causal = True else: # turn off FA causal mask after first inference autoregressive iteration # only on first autoregressive step q,k,v have same seqlen is_causal = key_states.shape == query_states.shape dropout_rate = 0.0 if not self.training else getattr(self, "attention_dropout", 0.0) if cu_seqlens is not None and max_seqlen is not None and cu_seqlens.dim() == 1: # special handling using sample packing qkv = torch.stack( [query_states, key_states, value_states], dim=2 ) # [bsz, nh, 3, q_len, hd] qkv = qkv.transpose(1, 3) # [bsz, q_len, 3, nh, hd] qkv = rearrange(qkv, "b s ... -> (b s) ...") output = flash_attn_varlen_qkvpacked_func( qkv, cu_seqlens, max_seqlen, dropout_p=dropout_rate, softmax_scale=None, causal=True, ) output = rearrange(output, "(b s) ... -> b s ...", b=bsz) elif query_states.shape == key_states.shape: query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) qkv_unpad, cu_seqlens_q, max_seqlen_q, _, output_pad_fn = generate_qkv( query_states, key_states, value_states, qkvpacked=True, # We have disabled _prepare_decoder_attention_mask in LlamaModel # the attention_mask should be the same as the key_padding_mask key_padding_mask=attention_mask, query_padding_mask=attention_mask[:, -query_states.size(1) :] if attention_mask is not None else None, ) output_unpad = flash_attn_varlen_qkvpacked_func( qkv_unpad, cu_seqlens_q, max_seqlen_q, dropout_p=dropout_rate, softmax_scale=None, causal=is_causal, ) output = output_pad_fn(output_unpad) else: query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) if attention_mask is None or attention_mask.all().item(): output = flash_attn_kvpacked_func( query_states, torch.stack([key_states, value_states], 2), dropout_p=dropout_rate, causal=is_causal, ) else: ( # pylint: disable=unbalanced-tuple-unpacking q_unpad, kv_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, _, _, output_pad_fn, ) = generate_qkv( query_states, key_states, value_states, kvpacked=True, key_padding_mask=attention_mask, query_padding_mask=attention_mask[:, -query_states.size(1) :] if attention_mask is not None else None, ) if q_unpad.dtype != kv_unpad.dtype: kv_unpad = kv_unpad.to(q_unpad.dtype) output_unpad = flash_attn_varlen_kvpacked_func( q_unpad, kv_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p=dropout_rate, softmax_scale=None, causal=is_causal, ) output = output_pad_fn(output_unpad) attn_output = output if attn_output.size() != (bsz, q_len, self.num_heads, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, q_len, self.num_heads, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = rearrange(attn_output, "b s h d -> b s (h d)") # # flash-attn v2 end # if self.pretraining_tp > 1: attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2) o_proj_slices = self.o_proj.weight.split( self.hidden_size // self.pretraining_tp, dim=1 ) attn_output = sum( F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.pretraining_tp) ) else: attn_output = self.o_proj(attn_output) return attn_output, None, past_key_value # based on https://github.com/Dao-AILab/flash-attention/blob/364a5b/tests/test_flash_attn.py#L38 def generate_qkv( q, k, v, query_padding_mask=None, key_padding_mask=None, kvpacked=False, qkvpacked=False, ): # pylint: disable=invalid-name,unnecessary-lambda-assignment """ Arguments: q: (batch_size, seqlen_q, nheads, d) k: (batch_size, seqlen_k, nheads_k, d) v: (batch_size, seqlen_k, nheads_k, d) query_padding_mask: (batch_size, seqlen), bool key_padding_mask: (batch_size, seqlen), bool """ assert not (kvpacked and qkvpacked) batch_size, seqlen_q, nheads, d = q.shape _, seqlen_k, nheads_k, _ = k.shape assert k.shape == (batch_size, seqlen_k, nheads_k, d) assert v.shape == (batch_size, seqlen_k, nheads_k, d) if query_padding_mask is not None: q_unpad, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input( q, query_padding_mask ) output_pad_fn = lambda output_unpad: pad_input( # noqa: E731 output_unpad, indices_q, batch_size, seqlen_q ) else: q_unpad = rearrange(q, "b s h d -> (b s) h d") cu_seqlens_q = torch.arange( 0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q_unpad.device, ) max_seqlen_q = seqlen_q output_pad_fn = lambda output_unpad: rearrange( # noqa: E731 output_unpad, "(b s) h d -> b s h d", b=batch_size ) if key_padding_mask is not None: k_unpad, _, cu_seqlens_k, max_seqlen_k = unpad_input(k, key_padding_mask) v_unpad, _, _, _ = unpad_input(v, key_padding_mask) else: k_unpad = rearrange(k, "b s h d -> (b s) h d") v_unpad = rearrange(v, "b s h d -> (b s) h d") cu_seqlens_k = torch.arange( 0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=k_unpad.device, ) max_seqlen_k = seqlen_k if qkvpacked: assert nheads == nheads_k qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1) qkv = torch.stack([q, k, v], dim=2) return (qkv_unpad, cu_seqlens_q, max_seqlen_q, qkv, output_pad_fn) if kvpacked: kv_unpad = torch.stack([k_unpad, v_unpad], dim=1) kv = torch.stack([k, v], dim=2) return ( q_unpad, kv_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, q, kv, output_pad_fn, ) return ( q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, q, k, v, output_pad_fn, ) def llama_model_forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[ # pylint: disable=unused-argument torch.LongTensor ] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time" ) if input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError( "You have to specify either decoder_input_ids or decoder_inputs_embeds" ) seq_length_with_past = seq_length past_key_values_length = 0 if past_key_values is not None: past_key_values_length = past_key_values[0][0].shape[2] seq_length_with_past = seq_length_with_past + past_key_values_length cu_seqlens = None max_seqlen = None if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device, ) position_ids = position_ids.unsqueeze(0).view(-1, seq_length) else: position_ids = position_ids.view(-1, seq_length).long() cu_seqlens, max_seqlen = get_cu_seqlens_from_pos_ids(position_ids) cu_seqlens = cu_seqlens.squeeze() if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) # embed positions if attention_mask is None: attention_mask = torch.ones( (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device, ) padding_mask = None else: if 0 in attention_mask: padding_mask = attention_mask else: padding_mask = None attention_mask = ( self._prepare_decoder_attention_mask( # pylint: disable=protected-access attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, ) ) hidden_states = inputs_embeds if self.gradient_checkpointing and self.training: if use_cache: transformers.logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = () if use_cache else None for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module( *inputs, ) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(decoder_layer), hidden_states, attention_mask, position_ids, past_key_value, output_attentions, None, padding_mask, cu_seqlens, max_seqlen, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, padding_mask=padding_mask, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None ) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) class LlamaDecoderLayer(OriginalLlamaDecoderLayer): """ patched version of LlamaDecoderLayer to pass through the precalculated cu_seqlens """ def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, padding_mask: Optional[torch.LongTensor] = None, cu_seqlens: Optional[torch.Tensor] = None, max_seqlen: Optional[torch.Tensor] = None, ) -> Tuple[ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] ]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states cu_seqlens (`torch.Tensor`, *optional*) cumulative sequence len when packing """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, padding_mask=padding_mask, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs