""" E2E tests for mixtral """ import logging import os import unittest from pathlib import Path import torch from transformers.utils import is_torch_bf16_gpu_available from axolotl.cli import load_datasets from axolotl.common.cli import TrainerCliArgs from axolotl.train import train from axolotl.utils.config import normalize_config from axolotl.utils.dict import DictDefault from .utils import with_temp_dir LOG = logging.getLogger("axolotl.tests.e2e") os.environ["WANDB_DISABLED"] = "true" class TestMixtral(unittest.TestCase): """ Test case for Llama models using LoRA """ @with_temp_dir def test_qlora_w_fa2(self, temp_dir): # pylint: disable=duplicate-code cfg = DictDefault( { "base_model": "hf-internal-testing/Mixtral-tiny", "tokenizer_config": "LoneStriker/Mixtral-8x7B-v0.1-HF", "flash_attention": True, "sequence_len": 1024, "load_in_4bit": True, "adapter": "qlora", "lora_r": 4, "lora_alpha": 8, "lora_dropout": 0.1, "lora_target_modules": [ "o_proj", "w3", "k_proj", "v_proj", "w1", "q_proj", "w2", ], "val_set_size": 0.1, "special_tokens": {}, "datasets": [ { "path": "mhenrichsen/alpaca_2k_test", "type": "alpaca", }, ], "num_epochs": 2, "micro_batch_size": 2, "gradient_accumulation_steps": 1, "output_dir": temp_dir, "learning_rate": 0.00001, "optimizer": "adamw_bnb_8bit", "lr_scheduler": "cosine", "max_steps": 20, "save_steps": 10, "eval_steps": 10, } ) normalize_config(cfg) cli_args = TrainerCliArgs() dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) model, _ = train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) assert ( model.base_model.model.model.layers[0].block_sparse_moe.gate.weight.dtype == torch.float32 ) assert (Path(temp_dir) / "adapter_model.bin").exists() @with_temp_dir def test_qlora_wo_fa2(self, temp_dir): # pylint: disable=duplicate-code cfg = DictDefault( { "base_model": "hf-internal-testing/Mixtral-tiny", "tokenizer_config": "LoneStriker/Mixtral-8x7B-v0.1-HF", "flash_attention": False, "sequence_len": 1024, "load_in_4bit": True, "adapter": "qlora", "lora_r": 4, "lora_alpha": 8, "lora_dropout": 0.1, "lora_target_modules": [ "o_proj", "w3", "k_proj", "v_proj", "w1", "q_proj", "w2", ], "val_set_size": 0.1, "special_tokens": {}, "datasets": [ { "path": "mhenrichsen/alpaca_2k_test", "type": "alpaca", }, ], "num_epochs": 2, "micro_batch_size": 2, "gradient_accumulation_steps": 1, "output_dir": temp_dir, "learning_rate": 0.00001, "optimizer": "adamw_bnb_8bit", "lr_scheduler": "cosine", "max_steps": 20, "save_steps": 10, "eval_steps": 10, } ) normalize_config(cfg) cli_args = TrainerCliArgs() dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) model, _ = train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) assert ( model.base_model.model.model.layers[0].block_sparse_moe.gate.weight.dtype == torch.float32 ) assert (Path(temp_dir) / "adapter_model.bin").exists() @with_temp_dir def test_16bit_lora_w_fa2(self, temp_dir): # pylint: disable=duplicate-code cfg = DictDefault( { "base_model": "hf-internal-testing/Mixtral-tiny", "tokenizer_config": "LoneStriker/Mixtral-8x7B-v0.1-HF", "flash_attention": True, "sequence_len": 1024, "adapter": "lora", "lora_r": 4, "lora_alpha": 8, "lora_dropout": 0.1, "lora_target_modules": [ "o_proj", "w3", "k_proj", "v_proj", "w1", "q_proj", "w2", ], "val_set_size": 0.1, "special_tokens": {}, "datasets": [ { "path": "mhenrichsen/alpaca_2k_test", "type": "alpaca", }, ], "num_epochs": 2, "micro_batch_size": 2, "gradient_accumulation_steps": 1, "output_dir": temp_dir, "learning_rate": 0.00001, "optimizer": "adamw_bnb_8bit", "lr_scheduler": "cosine", "max_steps": 20, "save_steps": 10, "eval_steps": 10, } ) if is_torch_bf16_gpu_available(): cfg.bf16 = True else: cfg.fp16 = True normalize_config(cfg) cli_args = TrainerCliArgs() dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) model, _ = train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) assert ( model.base_model.model.model.layers[0].block_sparse_moe.gate.weight.dtype == torch.float32 ) assert (Path(temp_dir) / "adapter_model.bin").exists() @with_temp_dir def test_16bit_lora_wo_fa2(self, temp_dir): # pylint: disable=duplicate-code cfg = DictDefault( { "base_model": "hf-internal-testing/Mixtral-tiny", "tokenizer_config": "LoneStriker/Mixtral-8x7B-v0.1-HF", "flash_attention": False, "sequence_len": 1024, "adapter": "lora", "lora_r": 4, "lora_alpha": 8, "lora_dropout": 0.1, "lora_target_modules": [ "o_proj", "w3", "k_proj", "v_proj", "w1", "q_proj", "w2", ], "val_set_size": 0.1, "special_tokens": {}, "datasets": [ { "path": "mhenrichsen/alpaca_2k_test", "type": "alpaca", }, ], "num_epochs": 2, "micro_batch_size": 2, "gradient_accumulation_steps": 1, "output_dir": temp_dir, "learning_rate": 0.00001, "optimizer": "adamw_bnb_8bit", "lr_scheduler": "cosine", "max_steps": 20, "save_steps": 10, "eval_steps": 10, } ) normalize_config(cfg) if is_torch_bf16_gpu_available(): cfg.bf16 = True else: cfg.fp16 = True cli_args = TrainerCliArgs() dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) model, _ = train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) assert ( model.base_model.model.model.layers[0].block_sparse_moe.gate.weight.dtype == torch.float32 ) assert (Path(temp_dir) / "adapter_model.bin").exists() @with_temp_dir def test_ft(self, temp_dir): # pylint: disable=duplicate-code cfg = DictDefault( { "base_model": "hf-internal-testing/Mixtral-tiny", "tokenizer_config": "LoneStriker/Mixtral-8x7B-v0.1-HF", "flash_attention": True, "sequence_len": 1024, "val_set_size": 0.1, "special_tokens": {}, "datasets": [ { "path": "mhenrichsen/alpaca_2k_test", "type": "alpaca", }, ], "num_epochs": 2, "micro_batch_size": 2, "gradient_accumulation_steps": 1, "output_dir": temp_dir, "learning_rate": 0.00001, "optimizer": "adamw_bnb_8bit", "lr_scheduler": "cosine", "max_steps": 20, "save_steps": 10, "eval_steps": 10, } ) if is_torch_bf16_gpu_available(): cfg.bf16 = True else: cfg.fp16 = True normalize_config(cfg) cli_args = TrainerCliArgs() dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) assert (Path(temp_dir) / "pytorch_model.bin").exists()