base_model: LnL-AI/dbrx-base-converted-v2 trust_remote_code: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: tatsu-lab/alpaca type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.0 output_dir: ./out sequence_len: 512 sample_packing: false pad_to_sequence_len: false wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: adapter: lora lora_model_dir: lora_r: 8 lora_alpha: 16 lora_dropout: 0.05 # w1, w2, & v1 will hang the trainer lora_target_modules: - q_proj # attn - k_proj # attn - v_proj # attn - out_proj # attn - layer # router # - w1 # - w2 # - v1 gradient_accumulation_steps: 1 micro_batch_size: 1 num_epochs: 1 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: false # don't use with fsdp_activation_checkpointing gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: saves_per_epoch: 1 debug: weight_decay: 0.0 fsdp: - full_shard - auto_wrap fsdp_config: fsdp_limit_all_gathers: true fsdp_sync_module_states: true fsdp_offload_params: false fsdp_use_orig_params: false fsdp_cpu_ram_efficient_loading: true fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_transformer_layer_cls_to_wrap: DbrxBlock fsdp_state_dict_type: FULL_STATE_DICT fsdp_activation_checkpointing: true