"""Module containing PromptTokenizingStrategy and Prompter classes""" import abc import copy import functools import logging from typing import Dict, List, Tuple, Union from transformers import BatchEncoding, PreTrainedTokenizer from axolotl.prompters import IGNORE_TOKEN_ID LOG = logging.getLogger("axolotl") IGNORE_INDEX = -100 LLAMA_DEFAULT_PAD_TOKEN = "" # nosec LLAMA_DEFAULT_EOS_TOKEN = "" # nosec LLAMA_DEFAULT_BOS_TOKEN = "" # nosec LLAMA_DEFAULT_UNK_TOKEN = "" # nosec class InvalidDataException(Exception): """ Exception raised when the data is invalid """ class PromptTokenizingStrategy(abc.ABC): """ Abstract class for tokenizing strategies """ def __init__( self, prompter, tokenizer, train_on_inputs: bool = False, sequence_len: int = 2048, ): self.prompter = prompter self.tokenizer: PreTrainedTokenizer = tokenizer self.train_on_inputs = train_on_inputs self.sequence_len = sequence_len @abc.abstractmethod def tokenize_prompt(self, prompt): pass @functools.lru_cache(maxsize=128) def _get_user_token(self): try: id_or_ids = self.tokenizer.convert_tokens_to_ids("<|USER|>") if isinstance(id_or_ids, (int,)): return id_or_ids except KeyError: pass return False @functools.lru_cache(maxsize=128) def _get_assistant_token(self): try: id_or_ids = self.tokenizer.convert_tokens_to_ids("<|ASSISTANT|>") if isinstance(id_or_ids, (int,)): return id_or_ids except KeyError: pass return False def _tokenize( self, prompt: str, add_eos_token: bool = True, strip_bos_token: bool = False ) -> BatchEncoding: result: BatchEncoding if not prompt.strip(): LOG.warning("Empty text requested for tokenization.") result = BatchEncoding(data={"input_ids": [], "attention_mask": []}) else: result = self.tokenizer( prompt, truncation=True, max_length=self.sequence_len, padding=False, return_tensors=None, ) if len(result["input_ids"]) == 0: LOG.warning("Tokenizer result is empty. You may want to audit your dataset") if ( len(result["input_ids"]) > 0 and result["input_ids"][-1] != self.tokenizer.eos_token_id and len(result["input_ids"]) < self.sequence_len and add_eos_token ): result["input_ids"].append(self.tokenizer.eos_token_id) result["attention_mask"].append(1) if ( len(result["input_ids"]) > 0 and result["input_ids"][0] == self.tokenizer.bos_token_id and strip_bos_token ): result["input_ids"] = result["input_ids"][1:] result["attention_mask"] = result["attention_mask"][1:] result["labels"] = result["input_ids"].copy() return result class InstructionPromptTokenizingStrategy(PromptTokenizingStrategy): """ Tokenizing strategy for instruction-based prompts. """ def parse_instruction_fields( self, prompt ) -> Union[Tuple[str, str, str], Tuple[str, str, str, str]]: raise NotImplementedError def tokenize_prompt(self, prompt): ( instruction, input, # pylint: disable=redefined-builtin response, ) = self.parse_instruction_fields(prompt) user_prompt = next( iter( self.prompter.build_prompt( instruction, input, ) ) ) tokenized_prompt = self._tokenize(user_prompt, add_eos_token=False) if not self.train_on_inputs: user_prompt_len = len(tokenized_prompt["input_ids"]) # TODO this could be sped up using numpy array slicing tokenized_prompt["labels"] = [-100] * user_prompt_len tokenized_res_prompt = self._tokenize( response, strip_bos_token=True, add_eos_token=True ) tokenized_prompt["input_ids"] += tokenized_res_prompt["input_ids"] tokenized_prompt["attention_mask"] += tokenized_res_prompt["attention_mask"] tokenized_prompt["labels"] += tokenized_res_prompt["input_ids"] return tokenized_prompt def _build_full_prompt( self, instruction, input, response # pylint: disable=redefined-builtin ): return next( iter( self.prompter.build_prompt( instruction, input, response, ) ) ) class AlpacaPromptTokenizingStrategy(InstructionPromptTokenizingStrategy): """ Tokenizing strategy for Alpaca prompts. """ def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]: return ( prompt["instruction"], prompt["input"] if "input" in prompt else "", prompt["output"], ) class AlpacaMultipleChoicePromptTokenizingStrategy(InstructionPromptTokenizingStrategy): """ Tokenizing strategy for Alpaca Multiple Choice prompts. """ def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]: return ( prompt["question"], "\n".join(f'- "{choice}"' for choice in prompt["choices"]), prompt["solution"] if "solution" in prompt else prompt["explanation"], ) class JeopardyPromptTokenizingStrategy(InstructionPromptTokenizingStrategy): """ Tokenizing strategy for Jeopardy prompts. """ def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]: return ( prompt["question"], prompt["category"], "what is " + prompt["answer"], ) class OpenAssistantPromptTokenizingStrategy(InstructionPromptTokenizingStrategy): """ Tokenizing strategy for OpenAssistant prompts. """ def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]: return ( prompt["INSTRUCTION"], "", prompt["RESPONSE"], ) class SummarizeTLDRPromptTokenizingStrategy(InstructionPromptTokenizingStrategy): """ Tokenizing strategy for SummarizeTLDR prompts. """ def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]: return ( prompt["article"], "", prompt["summary"], ) class GPTeacherPromptTokenizingStrategy(InstructionPromptTokenizingStrategy): """ Tokenizing strategy for GPTeacher prompts. """ def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]: return ( prompt["instruction"], prompt["input"] if "input" in prompt else "", prompt["response"], ) class NomicGPT4AllPromptTokenizingStrategy(InstructionPromptTokenizingStrategy): """ Tokenizing strategy for NomicGPT4All prompts. """ def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]: return ( prompt["prompt"], "", prompt["response"], ) class CompletionPromptTokenizingStrategy(InstructionPromptTokenizingStrategy): """ Tokenizing strategy for Completion prompts. """ _field: str = "text" @property def field(self) -> str: return self._field @field.setter def field(self, new_field: str): self._field = new_field def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]: return ( prompt[self.field], "", "", ) def tokenize_prompt(self, prompt): ( instruction, _, _, ) = self.parse_instruction_fields(prompt) full_prompt = self._build_full_prompt(instruction, None, None) tokenized_full_prompt = self._tokenize(full_prompt) return tokenized_full_prompt def _build_full_prompt( self, instruction, input, response ): # pylint: disable=redefined-builtin return next(iter(self.prompter.build_prompt(instruction, input, response))) class ReflectionPromptTokenizingStrategy(PromptTokenizingStrategy): """ Tokenizing strategy for Reflection prompts. """ def parse_instruction_fields(self, prompt) -> Tuple[str, str, str, str, str]: raise NotImplementedError def tokenize_prompt(self, prompt): ( instruction, input, # pylint: disable=redefined-builtin output, reflection, corrected, ) = self.parse_instruction_fields(prompt) full_prompt = self._build_full_prompt( instruction, input, output, reflection, corrected ) tokenized_full_prompt = self._tokenize(full_prompt) if not self.train_on_inputs: user_prompt = next( iter( self.prompter.build_prompt( instruction, input, ) ) ) tokenized_user_prompt = self._tokenize(user_prompt, add_eos_token=False) user_prompt_len = len(tokenized_user_prompt["input_ids"]) # TODO this could be sped up using numpy array slicing tokenized_full_prompt["labels"] = [ -100 ] * user_prompt_len + tokenized_full_prompt["labels"][user_prompt_len:] return tokenized_full_prompt def _build_full_prompt( self, instruction, input, output, reflection, corrected ): # pylint: disable=redefined-builtin return next( iter( self.prompter.build_prompt( instruction, input, output, reflection, corrected, ) ) ) def _tokenize(self, prompt, add_eos_token=True, strip_bos_token=False): result = self.tokenizer( prompt, truncation=True, max_length=self.sequence_len, padding=False, return_tensors=None, ) if ( result["input_ids"][-1] != self.tokenizer.eos_token_id and len(result["input_ids"]) < self.sequence_len and add_eos_token ): result["input_ids"].append(self.tokenizer.eos_token_id) result["attention_mask"].append(1) result["labels"] = result["input_ids"].copy() return result class AlpacaReflectionPTStrategy(ReflectionPromptTokenizingStrategy): """ Tokenizing strategy for Alpaca Reflection prompts. """ def parse_instruction_fields(self, prompt) -> Tuple[str, str, str, str, str]: return ( prompt["instruction"], prompt["input"] if "input" in prompt else "", prompt["output"], prompt["reflection"], prompt["corrected"], ) class ShareGPTPromptTokenizingStrategy(PromptTokenizingStrategy): """ Tokenizing strategy for ShareGPT prompts. """ def get_conversation_thread(self, prompt): return prompt["conversations"] def tokenize_prompt(self, prompt): result, current_len = tokenize_prompt_default() user_token = self._get_user_token() assistant_token = self._get_assistant_token() try: for _, part in enumerate( self.prompter.build_prompt(self.get_conversation_thread(prompt)) ): if isinstance(part, tuple): if part[0] == "USER:": part = part[0] + part[1] if not user_token else part[1] # this is still the user query, we should res = self._tokenize( part.strip(), add_eos_token=False, strip_bos_token=True, ) if user_token: res["input_ids"] = [user_token, *res["input_ids"]] # everything from this is masked out from the labels labels = [IGNORE_TOKEN_ID] * len(res["input_ids"]) elif part[0] == "ASSISTANT:": # TODO label assistant token/tokens w/ IGNORE_TOKEN_ID part = part[0] + part[1] if not assistant_token else part[1] # this should be the assistent response, should end with an eos token res = self._tokenize( part.strip(), add_eos_token=True, strip_bos_token=True, ) if assistant_token: res["input_ids"] = [ assistant_token, *res["input_ids"], ] # not masked out from labels labels = copy.deepcopy(res["input_ids"]) elif part[0] == "SYSTEM:": part = part[1] # Ignore the system role from preamble # this is only ever the first part, should include the bos token and the user query res = self._tokenize( part.strip(), add_eos_token=False, strip_bos_token=False ) # everything from this is masked out from the labels labels = [IGNORE_TOKEN_ID] * len(res["input_ids"]) else: LOG.warning(f"unhandled role: {part[0]}") # pylint: disable=duplicate-code result, current_len = parse_tokenized_to_result( result, current_len, res, labels, pad_token_id=self.tokenizer.pad_token_id, ) return result except (KeyError, AssertionError, IndexError) as err: raise InvalidDataException(str(err)) from err def _tokenize(self, prompt, add_eos_token=True, strip_bos_token=False): result = self.tokenizer( prompt, truncation=True, max_length=self.sequence_len, padding=False, return_tensors=None, ) if ( result["input_ids"][-1] != self.tokenizer.eos_token_id and len(result["input_ids"]) < self.sequence_len and add_eos_token ): result["input_ids"].append(self.tokenizer.eos_token_id) result["attention_mask"].append(1) if result["input_ids"][0] == self.tokenizer.bos_token_id and strip_bos_token: result["input_ids"] = result["input_ids"][1:] result["attention_mask"] = result["attention_mask"][1:] result["labels"] = result["input_ids"].copy() return result def tokenize_prompt_default() -> Tuple[Dict[str, List[int]], int]: """ Returns the default values for the tokenize prompt function """ result: Dict[str, List[int]] = { "input_ids": [], "attention_mask": [], "labels": [], } current_len = 0 return result, current_len def parse_tokenized_to_result( result: Dict[str, List[int]], current_len: int, res: Dict[str, List[int]], labels: List[int], pad_token_id: Union[int, None] = None, ) -> Tuple[Dict[str, List[int]], int]: """ Parses the tokenized prompt and append the tokenized input_ids, attention_mask and labels to the result """ input_ids = res["input_ids"] input_len = len(input_ids) result["input_ids"][current_len : current_len + input_len] = input_ids result["attention_mask"][current_len : current_len + input_len] = [ 1 if x != pad_token_id else 0 for x in input_ids ] result["labels"][current_len : current_len + input_len] = labels current_len += input_len return result, current_len