"""Module containing data utilities""" import functools import hashlib import logging from pathlib import Path from typing import Dict, List, Tuple, Union import torch from datasets import ( Dataset, DatasetDict, concatenate_datasets, load_dataset, load_from_disk, ) from huggingface_hub import hf_hub_download from transformers import PreTrainedTokenizerBase from axolotl.datasets import ConstantLengthDataset, TokenizedPromptDataset from axolotl.prompt_strategies import load from axolotl.prompt_tokenizers import ( AlpacaMultipleChoicePromptTokenizingStrategy, AlpacaPromptTokenizingStrategy, AlpacaReflectionPTStrategy, GPTeacherPromptTokenizingStrategy, JeopardyPromptTokenizingStrategy, OpenAssistantPromptTokenizingStrategy, ShareGPTPromptTokenizingStrategy, SummarizeTLDRPromptTokenizingStrategy, ) from axolotl.prompters import ( AlpacaPrompter, GPTeacherPrompter, JeopardyPrompter, MultipleChoiceConcisePrompter, MultipleChoiceExplainPrompter, ReflectAlpacaPrompter, ShareGPTPrompter, SummarizeTLDRPrompter, ) from axolotl.utils.dict import DictDefault from axolotl.utils.distributed import is_main_process, zero_first from axolotl.utils.trainer import ( calculate_total_num_steps, process_datasets_for_packing, ) LOG = logging.getLogger("axolotl") DEFAULT_DATASET_PREPARED_PATH = "last_run_prepared" def md5(to_hash: str, encoding: str = "utf-8") -> str: try: return hashlib.md5(to_hash.encode(encoding), usedforsecurity=False).hexdigest() except TypeError: return hashlib.md5(to_hash.encode(encoding)).hexdigest() # nosec def prepare_dataset(cfg, tokenizer): if not cfg.pretraining_dataset: with zero_first(is_main_process()): train_dataset, eval_dataset = load_prepare_datasets( tokenizer, cfg, DEFAULT_DATASET_PREPARED_PATH ) else: train_dataset = load_pretraining_dataset( cfg.pretraining_dataset, tokenizer, max_tokens=cfg.sequence_len, seed=cfg.seed or 42, ) # https://discuss.huggingface.co/t/how-to-use-huggingface-trainer-streaming-datasets-without-wrapping-it-with-torchdatas-iterablewrapper/25230 train_dataset = train_dataset.with_format("torch") eval_dataset = None return train_dataset, eval_dataset, cfg.max_steps with zero_first(is_main_process()): train_dataset, eval_dataset = process_datasets_for_packing( cfg, train_dataset, eval_dataset ) if cfg.max_steps: total_num_steps = min( calculate_total_num_steps(cfg, train_dataset, tokenizer), cfg.max_steps ) LOG.info(f"Maximum number of steps set at {total_num_steps}") else: total_num_steps = calculate_total_num_steps(cfg, train_dataset, tokenizer) return train_dataset, eval_dataset, total_num_steps def load_tokenized_prepared_datasets( tokenizer, cfg, default_dataset_prepared_path ) -> DatasetDict: tokenizer_name = tokenizer.__class__.__name__ ds_hash = str( md5( ( str(cfg.sequence_len) + "@" + "|".join( sorted([f"{d.path}:{d.type}:{d.shards}" for d in cfg.datasets]) ) + "|" + tokenizer_name ) ) ) prepared_ds_path = ( Path(cfg.dataset_prepared_path) / ds_hash if cfg.dataset_prepared_path else Path(default_dataset_prepared_path) / ds_hash ) dataset = None use_auth_token = cfg.hf_use_auth_token try: if cfg.push_dataset_to_hub: dataset = load_dataset( f"{cfg.push_dataset_to_hub}/{ds_hash}", use_auth_token=use_auth_token, ) dataset = dataset["train"] except Exception: # pylint: disable=broad-except # nosec pass if dataset: ... elif any(prepared_ds_path.glob("*")): LOG.info(f"Loading prepared dataset from disk at {prepared_ds_path}...") dataset = load_from_disk(str(prepared_ds_path)) LOG.info("Prepared dataset loaded from disk...") else: LOG.info(f"Unable to find prepared dataset in {prepared_ds_path}") LOG.info("Loading raw datasets...") if cfg.seed: seed = cfg.seed else: LOG.info("No seed provided, using default seed of 42") seed = 42 datasets = [] def for_d_in_datasets(dataset_configs): for dataset in dataset_configs: if dataset.name and isinstance(dataset.name, list): for name in dataset.name: yield DictDefault({**dataset, "name": name}) else: yield dataset # pylint: disable=invalid-name for d in for_d_in_datasets(cfg.datasets): ds: Union[Dataset, DatasetDict] = None ds_from_hub = False try: load_dataset( d.path, name=d.name, streaming=True, use_auth_token=use_auth_token, ) ds_from_hub = True except FileNotFoundError: pass # prefer local dataset, even if hub exists local_path = Path(d.path) if local_path.exists(): if local_path.is_dir(): # TODO dirs with arrow or parquet files could be loaded with `load_from_disk` ds = load_dataset( d.path, name=d.name, data_files=d.data_files, streaming=False, split=None, ) elif local_path.is_file(): ds_type = "json" if d.ds_type: ds_type = d.ds_type elif ".parquet" in d.path: ds_type = "parquet" elif ".arrow" in d.path: ds_type = "arrow" ds = load_dataset( ds_type, name=d.name, data_files=d.path, streaming=False, split=None, ) else: raise ValueError( "unhandled dataset load: local path exists, but is neither a directory or a file" ) elif ds_from_hub: ds = load_dataset( d.path, name=d.name, streaming=False, data_files=d.data_files, use_auth_token=use_auth_token, ) else: fp = hf_hub_download( repo_id=d.path, repo_type="dataset", filename=d.data_files, ) ds = load_dataset( "json", name=d.name, data_files=fp, streaming=False, split=None ) if not ds: raise ValueError("unhandled dataset load") # support for using a subset of the data if d.shards: if "train" in ds: ds = ds.shuffle(seed=seed)["train"].shard( num_shards=d.shards, index=0 ) else: ds = ds.shuffle(seed=seed).shard(num_shards=d.shards, index=0) d_base_type = d_prompt_style = None d_type = d.type if isinstance(d_type, str): d_type_split = d_type.split(":") d_base_type = d_type_split[0] d_prompt_style = d_type_split[1] if len(d_type_split) > 1 else None if "train" in ds: ds = ds["train"] if ( "input_ids" in ds.features and "attention_mask" in ds.features and "labels" in ds.features ): # dataset is already tokenized, just drop it straight in datasets.append(ds) elif isinstance(d.type, DictDefault): ds_strategy = load("user_defined", tokenizer, cfg, d.type.to_dict()) ds_wrapper = TokenizedPromptDataset(ds_strategy, ds) datasets.append(ds_wrapper) elif ds_strategy := load(d.type, tokenizer, cfg, d): ds_wrapper = TokenizedPromptDataset(ds_strategy, ds) datasets.append(ds_wrapper) elif d_base_type == "alpaca": ds_strategy = AlpacaPromptTokenizingStrategy( AlpacaPrompter(d_prompt_style), tokenizer, cfg.train_on_inputs, cfg.sequence_len, ) ds_wrapper = TokenizedPromptDataset(ds_strategy, ds) datasets.append(ds_wrapper) elif d_base_type == "explainchoice": ds_strategy = AlpacaMultipleChoicePromptTokenizingStrategy( MultipleChoiceExplainPrompter(d_prompt_style), tokenizer, cfg.train_on_inputs, cfg.sequence_len, ) ds_wrapper = TokenizedPromptDataset(ds_strategy, ds) datasets.append(ds_wrapper) elif d_base_type == "concisechoice": ds_strategy = AlpacaMultipleChoicePromptTokenizingStrategy( MultipleChoiceConcisePrompter(d_prompt_style), tokenizer, cfg.train_on_inputs, cfg.sequence_len, ) ds_wrapper = TokenizedPromptDataset(ds_strategy, ds) datasets.append(ds_wrapper) elif d_base_type == "summarizetldr": ds_strategy = SummarizeTLDRPromptTokenizingStrategy( SummarizeTLDRPrompter(d_prompt_style), tokenizer, cfg.train_on_inputs, cfg.sequence_len, ) ds_wrapper = TokenizedPromptDataset(ds_strategy, ds) datasets.append(ds_wrapper) elif d_base_type == "jeopardy": ds_strategy = JeopardyPromptTokenizingStrategy( JeopardyPrompter(d_prompt_style), tokenizer, cfg.train_on_inputs, cfg.sequence_len, ) ds_wrapper = TokenizedPromptDataset(ds_strategy, ds) datasets.append(ds_wrapper) elif d_base_type == "oasst": ds_strategy = OpenAssistantPromptTokenizingStrategy( AlpacaPrompter(d_prompt_style), tokenizer, cfg.train_on_inputs, cfg.sequence_len, ) ds_wrapper = TokenizedPromptDataset(ds_strategy, ds) datasets.append(ds_wrapper) elif d_base_type == "gpteacher": ds_strategy = GPTeacherPromptTokenizingStrategy( GPTeacherPrompter(d_prompt_style), tokenizer, cfg.train_on_inputs, cfg.sequence_len, ) ds_wrapper = TokenizedPromptDataset(ds_strategy, ds) datasets.append(ds_wrapper) elif d_base_type == "reflection": ds_strategy = AlpacaReflectionPTStrategy( ReflectAlpacaPrompter(d_prompt_style), tokenizer, cfg.train_on_inputs, cfg.sequence_len, ) ds_wrapper = TokenizedPromptDataset(ds_strategy, ds) datasets.append(ds_wrapper) elif d_base_type == "sharegpt": ds_strategy = ShareGPTPromptTokenizingStrategy( ShareGPTPrompter(d_prompt_style), tokenizer, cfg.train_on_inputs, cfg.sequence_len, ) ds_wrapper = TokenizedPromptDataset(ds_strategy, ds) datasets.append(ds_wrapper) else: suffix = "" if ":load_" in d.type: suffix = f" Did you mean {d.type.replace(':load_', '.load_')}?" LOG.error(f"unhandled prompt tokenization strategy: {d.type}. {suffix}") raise ValueError( f"unhandled prompt tokenization strategy: {d.type} {suffix}" ) LOG.info("merging datasets") dataset = concatenate_datasets(datasets) if len(datasets) > 1: LOG.info("shuffle merged datasets") dataset = dataset.shuffle(seed=seed) if cfg.local_rank == 0: LOG.info(f"Saving merged prepared dataset to disk... {prepared_ds_path}") dataset.save_to_disk(prepared_ds_path) if cfg.push_dataset_to_hub: LOG.info( f"Saving merged prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}" ) dataset.push_to_hub( f"{cfg.push_dataset_to_hub}/{ds_hash}", private=True ) return dataset def load_prepare_datasets( tokenizer: PreTrainedTokenizerBase, cfg, default_dataset_prepared_path, ) -> Tuple[Dataset, Dataset]: max_packed_sequence_len = ( cfg.max_packed_sequence_len if cfg.max_packed_sequence_len else cfg.sequence_len ) max_packed_sequence_len = min( max_packed_sequence_len, cfg.sequence_len ) # make sure we don't accidentally set it larger than sequence_len tokenizer_name = tokenizer.__class__.__name__ if cfg.max_packed_sequence_len is not None: # see if we can go ahead and load the stacked dataset seed = f"@{str(cfg.seed)}" if cfg.seed else "" ds_hash = str( md5( ( str(cfg.sequence_len) + "@" + str(max_packed_sequence_len) + seed + "|".join( sorted([f"{d.path}:{d.type}:{d.shards}" for d in cfg.datasets]) ) + "|" + tokenizer_name ) ) ) prepared_ds_path = ( Path(cfg.dataset_prepared_path) / ds_hash if cfg.dataset_prepared_path else Path(default_dataset_prepared_path) / ds_hash ) dataset = None use_auth_token = cfg.hf_use_auth_token try: if cfg.push_dataset_to_hub: LOG.info( f"Checking for packed prepared dataset from hub... {cfg.push_dataset_to_hub}/{ds_hash}" ) dataset = load_dataset( f"{cfg.push_dataset_to_hub}/{ds_hash}", use_auth_token=use_auth_token, ) dataset = dataset["train"] except Exception: # pylint: disable=broad-except # nosec pass if dataset: ... elif any(prepared_ds_path.glob("*")): LOG.info( f"Loading prepared packed dataset from disk at {prepared_ds_path}..." ) dataset = load_from_disk(str(prepared_ds_path)) LOG.info("Prepared packed dataset loaded from disk...") if cfg.push_dataset_to_hub: LOG.info( f"Saving packed prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}" ) dataset.push_to_hub( f"{cfg.push_dataset_to_hub}/{ds_hash}", private=True ) else: dataset = load_tokenized_prepared_datasets( tokenizer, cfg, default_dataset_prepared_path ) if cfg.seed: dataset = dataset.shuffle(seed=cfg.seed) constant_len_dataset = ConstantLengthDataset( tokenizer, [dataset], seq_length=max_packed_sequence_len, ) LOG.info(f"packing master dataset to len: {cfg.max_packed_sequence_len}") dataset = Dataset.from_list(list(constant_len_dataset)) # filter out bad data # TODO convert to dataset.filter(...) dataset = Dataset.from_list( [ d for d in dataset if len(d["input_ids"]) <= cfg.sequence_len and len(d["input_ids"]) > 0 and len(d["input_ids"]) == len(d["attention_mask"]) and len(d["input_ids"]) == len(d["labels"]) ] ) if cfg.local_rank == 0: LOG.info( f"Saving packed prepared dataset to disk... {prepared_ds_path}" ) dataset.save_to_disk(prepared_ds_path) if cfg.push_dataset_to_hub: LOG.info( f"Saving packed prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}" ) dataset.push_to_hub( f"{cfg.push_dataset_to_hub}/{ds_hash}", private=True, ) else: dataset = load_tokenized_prepared_datasets( tokenizer, cfg, default_dataset_prepared_path ) if cfg.dataset_shard_num and cfg.dataset_shard_idx is not None: LOG.info( f"Using index #{cfg.dataset_shard_idx} of {cfg.dataset_shard_num} shards" ) dataset = dataset.shard( num_shards=cfg.dataset_shard_num, index=cfg.dataset_shard_idx, ) if cfg.val_set_size: # ensure we end up with the same fingerprint by doing rank0 first and being able to cache to_hash_train = ( dataset._fingerprint # pylint: disable=protected-access + "|" + str(cfg.val_set_size) + "|" + "train" + "|" + str(cfg.seed or 42) ) to_hash_test = ( dataset._fingerprint # pylint: disable=protected-access + "|" + str(cfg.val_set_size) + "|" + "test" + "|" + str(cfg.seed or 42) ) train_fingerprint = md5(to_hash_train) test_fingerprint = md5(to_hash_test) with zero_first(is_main_process()): dataset = dataset.train_test_split( test_size=cfg.val_set_size, shuffle=False, seed=cfg.seed or 42, train_new_fingerprint=train_fingerprint, test_new_fingerprint=test_fingerprint, ) train_dataset = dataset["train"] eval_dataset = dataset["test"] else: train_dataset = dataset eval_dataset = None return train_dataset, eval_dataset def encode_pretraining( tokenizer: PreTrainedTokenizerBase, max_tokens: int, examples: List[str] ) -> Dict[str, List]: res = tokenizer( examples, truncation=True, max_length=max_tokens - 2, add_special_tokens=True, ) # Convert to PyTorch tensors input_ids = [torch.tensor(seq) for seq in res["input_ids"]] attention_mask = [torch.tensor(seq) for seq in res["attention_mask"]] new_input_ids = [] new_attention_mask = [] # Append EOS and PAD tokens to input_ids, and correct attention_mask for i, _ in enumerate(input_ids): input_ids[i] = torch.cat( ( input_ids[i], torch.tensor([tokenizer.eos_token_id, tokenizer.pad_token_id]), ), dim=0, ) attention_mask[i] = torch.cat((attention_mask[i], torch.tensor([1, 0])), dim=0) # Concatenate tokens so that their lengths are less than max_tokens buffer_input_ids = torch.tensor([], dtype=torch.long) buffer_attention_mask = torch.tensor([], dtype=torch.long) for ids, mask in zip(input_ids, attention_mask): if buffer_input_ids.numel() == max_tokens: new_input_ids.append(buffer_input_ids) new_attention_mask.append(buffer_attention_mask) buffer_input_ids = torch.tensor([], dtype=torch.long) buffer_attention_mask = torch.tensor([], dtype=torch.long) buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0) buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0) elif buffer_input_ids.numel() + ids.numel() <= max_tokens: buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0) buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0) else: buffer_input_ids = torch.cat( ( buffer_input_ids, torch.full( (max_tokens - buffer_input_ids.numel(),), tokenizer.pad_token_id, dtype=torch.long, ), ), dim=0, ) buffer_attention_mask = torch.cat( ( buffer_attention_mask, torch.full( (max_tokens - buffer_attention_mask.numel(),), 0, dtype=torch.long, ), ), dim=0, ) new_input_ids.append(buffer_input_ids) new_attention_mask.append(buffer_attention_mask) buffer_input_ids = torch.tensor([], dtype=torch.long) buffer_attention_mask = torch.tensor([], dtype=torch.long) buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0) buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0) if buffer_input_ids.numel() > 0: # for any leftover tokens while buffer_input_ids.numel() < max_tokens: # make all sequences equal in size buffer_input_ids = torch.cat( ( buffer_input_ids, torch.full( (max_tokens - buffer_input_ids.numel(),), tokenizer.pad_token_id, dtype=torch.long, ), ), dim=0, ) buffer_attention_mask = torch.cat( ( buffer_attention_mask, torch.full( (max_tokens - buffer_attention_mask.numel(),), 0, dtype=torch.long, ), ), dim=0, ) new_input_ids.append(buffer_input_ids) new_attention_mask.append(buffer_attention_mask) ret = { "input_ids": [seq.tolist() for seq in new_input_ids], "labels": [seq.tolist() for seq in new_input_ids], "attention_mask": [seq.tolist() for seq in new_attention_mask], } LOG.debug(len(ret["input_ids"])) return ret def load_pretraining_dataset(path, tokenizer, max_tokens=2048, seed=42): encode = functools.partial(encode_pretraining, tokenizer, max_tokens) dataset = load_dataset(path, streaming=True, split="train") dataset = dataset.shuffle(seed=seed, buffer_size=10_000) dataset = dataset.map( encode, batched=True, input_columns="text", # remove all the existing columns after mapping since they end up having # a different length than the encoded/tokenized column remove_columns=dataset.features.keys(), ) return dataset