Dpngtm's picture
Update app.py
0a3c034 verified
raw
history blame
3.7 kB
import gradio as gr
import torch
import torch.nn.functional as F
from transformers import Wav2Vec2Processor, Wav2Vec2ForSequenceClassification
import torchaudio
import numpy as np
# Define emotion labels
emotion_labels = ["angry", "calm", "disgust", "fearful", "happy", "neutral", "sad", "surprised"]
# Load model and processor
model_name = "Dpngtm/wav2vec2-emotion-recognition"
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name)
processor = Wav2Vec2Processor.from_pretrained(model_name, num_labels=len(emotion_labels))
# Define device
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
model.eval()
def recognize_emotion(audio):
try:
if audio is None:
return {emotion: 0.0 for emotion in emotion_labels}
audio_path = audio if isinstance(audio, str) else audio.name
speech_array, sampling_rate = torchaudio.load(audio_path)
duration = speech_array.shape[1] / sampling_rate
if duration > 60:
return {
"Error": "Audio too long (max 1 minute)",
**{emotion: 0.0 for emotion in emotion_labels}
}
if sampling_rate != 16000:
resampler = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000)
speech_array = resampler(speech_array)
if speech_array.shape[0] > 1:
speech_array = torch.mean(speech_array, dim=0, keepdim=True)
speech_array = speech_array / torch.max(torch.abs(speech_array))
speech_array = speech_array.squeeze().numpy()
inputs = processor(speech_array, sampling_rate=16000, return_tensors='pt', padding=True)
input_values = inputs.input_values.to(device)
with torch.no_grad():
outputs = model(input_values)
logits = outputs.logits
probs = F.softmax(logits, dim=-1)[0].cpu().numpy()
confidence_scores = {
emotion: round(float(prob) * 100, 2)
for emotion, prob in zip(emotion_labels, probs)
}
sorted_scores = dict(sorted(
confidence_scores.items(),
key=lambda x: x[1],
reverse=True
))
return sorted_scores
except Exception as e:
return {
"Error": str(e),
**{emotion: 0.0 for emotion in emotion_labels}
}
interface = gr.Interface(
fn=recognize_emotion,
inputs=gr.Audio(
sources=["microphone", "upload"],
type="filepath",
label="Upload audio or record from microphone",
max_length=60
),
outputs=gr.Label(
num_top_classes=len(emotion_labels),
label="Emotion Predictions"
),
title="Speech Emotion Recognition",
description="""
## Speech Emotion Recognition using Wav2Vec2
This model recognizes emotions from speech audio in the following categories:
- Angry 😠
- Calm 😌
- Disgust 🀒
- Fearful 😨
- Happy 😊
- Neutral 😐
- Sad 😒
- Surprised 😲
### Instructions:
1. Upload an audio file or record through the microphone
2. Wait for processing
3. View predicted emotions with confidence scores
### Notes:
- Maximum audio length: 1 minute
- Best results with clear speech and minimal background noise
- Confidence scores are shown as percentages
"""
)
if __name__ == "__main__":
interface.launch(
share=True,
debug=True,
server_name="0.0.0.0",
server_port=7860
)