Dpngtm's picture
Update app.py
56813b6 verified
import gradio as gr
import torch
import torch.nn.functional as F
from transformers import Wav2Vec2Processor, Wav2Vec2ForSequenceClassification
import torchaudio
# Define emotion labels and corresponding icons
emotion_labels = ["angry", "calm", "disgust", "fearful", "happy", "neutral", "sad", "surprised"]
emotion_icons = {
"angry": "😠", "calm": "😌", "disgust": "🀒", "fearful": "😨",
"happy": "😊", "neutral": "😐", "sad": "😒", "surprised": "😲"
}
# Load model and processor
model_name = "Dpngtm/wav2vec2-emotion-recognition"
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name)
processor = Wav2Vec2Processor.from_pretrained(model_name, num_labels=len(emotion_labels))
# Set device
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
model.eval()
def recognize_emotion(audio):
try:
# Handle case where no audio is provided
if audio is None:
return {f"{emotion} {emotion_icons[emotion]}": 0.0 for emotion in emotion_labels}
# Load and preprocess the audio
audio_path = audio if isinstance(audio, str) else audio.name
speech_array, sampling_rate = torchaudio.load(audio_path)
# Limit audio length to 1 minute (60 seconds)
duration = speech_array.shape[1] / sampling_rate
if duration > 60:
return {
"Error": "Audio too long (max 1 minute)",
**{f"{emotion} {emotion_icons[emotion]}": 0.0 for emotion in emotion_labels}
}
# Resample audio if not at 16kHz
if sampling_rate != 16000:
resampler = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000)
speech_array = resampler(speech_array)
# Convert stereo to mono if necessary
if speech_array.shape[0] > 1:
speech_array = torch.mean(speech_array, dim=0, keepdim=True)
# Normalize audio
speech_array = speech_array / torch.max(torch.abs(speech_array))
speech_array = speech_array.squeeze().numpy()
# Process audio with the model
inputs = processor(speech_array, sampling_rate=16000, return_tensors='pt', padding=True)
input_values = inputs.input_values.to(device)
with torch.no_grad():
outputs = model(input_values)
logits = outputs.logits
probs = F.softmax(logits, dim=-1)[0].cpu().numpy()
# Prepare the confidence scores without converting to percentages
confidence_scores = {
f"{emotion} {emotion_icons[emotion]}": prob
for emotion, prob in zip(emotion_labels, probs)
}
# Sort scores in descending order
sorted_scores = dict(sorted(confidence_scores.items(), key=lambda x: x[1], reverse=True))
return sorted_scores
except Exception as e:
# Return error message along with zeroed-out emotion scores
return {
"Error": str(e),
**{f"{emotion} {emotion_icons[emotion]}": 0.0 for emotion in emotion_labels}
}
# Supported emotions for display
supported_emotions = " | ".join([f"{emotion_icons[emotion]} {emotion}" for emotion in emotion_labels])
# Gradio Interface setup
interface = gr.Interface(
fn=recognize_emotion,
inputs=gr.Audio(
sources=["microphone", "upload"],
type="filepath",
label="Record or Upload Audio"
),
outputs=gr.Label(
num_top_classes=len(emotion_labels),
label="Detected Emotion"
),
title="Speech Emotion Recognition",
description=f"""
### Supported Emotions:
{supported_emotions}
Maximum audio length: 1 minute""",
theme=gr.themes.Soft(
primary_hue="orange",
secondary_hue="blue"
),
css="""
.gradio-container {max-width: 800px}
.label {font-size: 18px}
"""
)
if __name__ == "__main__":
interface.launch(
share=True,
debug=True,
server_name="0.0.0.0",
server_port=7860
)