File size: 14,796 Bytes
9a7b472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d4400d
9a7b472
 
 
 
1d4400d
9a7b472
 
 
 
 
 
 
 
 
 
6e0cef4
 
 
 
 
 
9a7b472
6e0cef4
 
 
9a7b472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b4a166
 
9a7b472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e0cef4
9a7b472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e0cef4
9a7b472
 
6e0cef4
 
9a7b472
 
 
 
 
 
 
 
 
 
c972785
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
import streamlit as st
import os
import time
import json
import re
from typing import List, Literal, TypedDict
from transformers import AutoTokenizer
from tools.tools import toolsInfo
from gradio_client import Client
import constants as C
import utils as U

from openai import OpenAI
import anthropic
from groq import Groq

from dotenv import load_dotenv
load_dotenv()

ModelType = Literal["GPT4", "CLAUDE", "LLAMA"]
ModelConfig = TypedDict("ModelConfig", {
    "client": OpenAI | Groq | anthropic.Anthropic,
    "model": str,
    "max_context": int,
    "tokenizer": AutoTokenizer
})

modelType: ModelType = os.environ.get("MODEL_TYPE") or "LLAMA"

MODEL_CONFIG: dict[ModelType, ModelConfig] = {
    "GPT4": {
        "client": OpenAI(api_key=os.environ.get("OPENAI_API_KEY")),
        "model": "gpt-4o-mini",
        "max_context": 128000,
        "tokenizer": AutoTokenizer.from_pretrained("Xenova/gpt-4o")
    },
    "CLAUDE": {
        "client": anthropic.Anthropic(api_key=os.environ.get("ANTHROPIC_API_KEY")),
        "model": "claude-3-5-sonnet-20240620",
        "max_context": 128000,
        "tokenizer": AutoTokenizer.from_pretrained("Xenova/claude-tokenizer")
    },
    "LLAMA": {
        "client": Groq(api_key=os.environ.get("GROQ_API_KEY")),
        "model": "llama-3.1-70b-versatile",
        "tools_model": "llama3-groq-70b-8192-tool-use-preview",
        "max_context": 128000,
        "tokenizer": AutoTokenizer.from_pretrained("Xenova/Meta-Llama-3.1-Tokenizer")
    }
}

client = MODEL_CONFIG[modelType]["client"]
MODEL = MODEL_CONFIG[modelType]["model"]
TOOLS_MODEL = MODEL_CONFIG[modelType].get("tools_model") or MODEL
MAX_CONTEXT = MODEL_CONFIG[modelType]["max_context"]
tokenizer = MODEL_CONFIG[modelType]["tokenizer"]

isClaudeModel = modelType == "CLAUDE"


def __countTokens(text):
    text = str(text)
    tokens = tokenizer.encode(text, add_special_tokens=False)
    return len(tokens)


st.set_page_config(
    page_title="Mini Perplexity",
    page_icon=C.AI_ICON,
)


def __isInvalidResponse(response: str):
    if len(re.findall(r'\n((?!http)[a-z])', response)) > 3 and "```" not in response:
        U.pprint("new line followed by small case char")
        return True

    if len(re.findall(r'\b(\w+)(\s+\1){2,}\b', response)) > 1:
        U.pprint("lot of consecutive repeating words")
        return True

    if len(re.findall(r'\n\n', response)) > 20:
        U.pprint("lots of paragraphs")
        return True

    if C.EXCEPTION_KEYWORD in response:
        U.pprint("LLM API threw exception")
        return True

    if ('{\n    "questions"' in response) and (C.JSON_SEPARATOR not in response):
        U.pprint("JSON response without json separator")
        return True
    if ('{\n    "action"' in response) and (C.JSON_SEPARATOR not in response):
        U.pprint("JSON response without json separator")
        return True

    if response.startswith(C.JSON_SEPARATOR):
        U.pprint("only options with no text")
        return True


def __matchingKeywordsCount(keywords: List[str], text: str):
    return sum([
        1 if keyword in text else 0
        for keyword in keywords
    ])


def __getMessages():
    def getContextSize():
        currContextSize = __countTokens(C.SYSTEM_MSG) + __countTokens(st.session_state.messages) + 100
        U.pprint(f"{currContextSize=}")
        return currContextSize

    while getContextSize() > MAX_CONTEXT:
        U.pprint("Context size exceeded, removing first message")
        st.session_state.messages.pop(0)

    return st.session_state.messages


def __logLlmRequest(messagesFormatted: list):
    contextSize = __countTokens(messagesFormatted)
    U.pprint(f"{contextSize=} | {MODEL}")
    # U.pprint(f"{messagesFormatted=}")


tools = [
    toolsInfo["getGoogleSearchResults"]["schema"],
]


def __showToolResponse(toolResponseDisplay: dict):
    msg = toolResponseDisplay.get("text")
    icon = toolResponseDisplay.get("icon")

    col1, col2 = st.columns([1, 20])
    with col1:
        st.image(
            icon or C.TOOL_ICON,
            width=30
        )
    with col2:
        if "`" not in msg:
            st.markdown(f"`{msg}`")
        else:
            st.markdown(msg)


def __addToolCallToMsgs(toolCall: dict):
    if isClaudeModel:
        st.session_state.messages.append(toolCall)
    else:
        st.session_state.messages.append(
            {
                "role": "assistant",
                "tool_calls": [
                    {
                        "id": toolCall.id,
                        "function": {
                            "name": toolCall.function.name,
                            "arguments": toolCall.function.arguments,
                        },
                        "type": toolCall.type,
                    }
                ],
            }
        )


def __processToolCalls(toolCalls):
    for toolCall in toolCalls:
        functionName = toolCall.function.name
        functionToCall = toolsInfo[functionName]["func"]
        functionArgsStr = toolCall.function.arguments
        U.pprint(f"{functionName=} | {functionArgsStr=}")
        functionArgs = json.loads(functionArgsStr)

        functionResult = functionToCall(**functionArgs)
        functionResponse = functionResult.get("response")
        responseDisplay = functionResult.get("display")
        U.pprint(f"{functionResponse=}")

        if responseDisplay:
            __showToolResponse(responseDisplay)
            st.session_state.toolResponseDisplay = responseDisplay

        __addToolCallToMsgs(toolCall)

        st.session_state.messages.append({
            "role": "tool",
            "tool_call_id": toolCall.id,
            "name": functionName,
            "content": functionResponse,
        })


def __processClaudeToolCalls(toolResponse):
    toolCall = toolResponse[1]

    functionName = toolCall.name
    functionToCall = toolsInfo[functionName]["func"]
    functionArgs = toolCall.input
    functionResult = functionToCall(**functionArgs)
    functionResponse = functionResult.get("response")
    responseDisplay = functionResult.get("display")
    U.pprint(f"{functionResponse=}")

    if responseDisplay:
        __showToolResponse(responseDisplay)
        st.session_state.toolResponseDisplay = responseDisplay

    __addToolCallToMsgs({
        "role": "assistant",
        "content": toolResponse
    })
    st.session_state.messages.append({
        "role": "user",
        "content": [{
            "type": "tool_result",
            "tool_use_id": toolCall.id,
            "content": functionResponse,
        }],
    })


def __dedupeToolCalls(toolCalls: list):
    toolCallsDict = {}
    for toolCall in toolCalls:
        funcName = toolCall.name if isClaudeModel else toolCall.function.name
        toolCallsDict[funcName] = toolCall
    dedupedToolCalls = list(toolCallsDict.values())

    if len(toolCalls) != len(dedupedToolCalls):
        U.pprint("Deduped tool calls!")
        U.pprint(f"{toolCalls=} -> {dedupedToolCalls=}")

    return dedupedToolCalls


def __getClaudeTools():
    claudeTools = []
    for tool in tools:
        funcInfo = tool["function"]
        name = funcInfo["name"]
        description = funcInfo["description"]
        schema = funcInfo["parameters"]
        claudeTools.append({
            "name": name,
            "description": description,
            "input_schema": schema,
        })

    return claudeTools


def predict(model: str = None):
    model = model or MODEL

    messagesFormatted = []
    try:
        if isClaudeModel:
            messagesFormatted.extend(__getMessages())
            __logLlmRequest(messagesFormatted)

            responseMessage = client.messages.create(
                model=model,
                messages=messagesFormatted,
                system=C.SYSTEM_MSG,
                temperature=0.5,
                max_tokens=4000,
                tools=__getClaudeTools()
            )

            responseMessageContent = responseMessage.content
            responseContent = responseMessageContent[0].text
            toolCalls = []
            if len(responseMessageContent) > 1:
                toolCalls = [responseMessageContent[1]]
        else:
            messagesFormatted = [{"role": "system", "content": C.SYSTEM_MSG}]
            messagesFormatted.extend(__getMessages())
            __logLlmRequest(messagesFormatted)

            response = client.chat.completions.create(
                model=model,
                messages=messagesFormatted,
                temperature=0.7,
                max_tokens=4000,
                stream=False,
                tools=tools
            )
            responseMessage = response.choices[0].message
            responseContent = responseMessage.content

            if responseContent and '<function=' in responseContent:
                U.pprint("Switching to TOOLS_MODEL")
                return predict(TOOLS_MODEL)
            toolCalls = responseMessage.tool_calls

        # U.pprint(f"{responseMessage=}")
        # U.pprint(f"{responseContent=}")
        U.pprint(f"{toolCalls=}")

        if toolCalls:
            toolCalls = __dedupeToolCalls(toolCalls)
            U.pprint("Deduping done!")
            try:
                if isClaudeModel:
                    __processClaudeToolCalls(responseMessage.content)
                else:
                    __processToolCalls(toolCalls)
                return predict()
            except Exception as e:
                U.pprint(e)
        else:
            return responseContent
    except Exception as e:
        U.pprint(f"LLM API Error: {e}")
        return C.EXCEPTION_KEYWORD


def __generateImage(prompt: str):
    fluxClient = Client("black-forest-labs/FLUX.1-schnell")
    result = fluxClient.predict(
            prompt=prompt,
            seed=0,
            randomize_seed=True,
            width=1024,
            height=768,
            num_inference_steps=4,
            api_name="/infer"
    )
    U.pprint(f"imageResult={result}")
    return result


def __resetButtonState():
    st.session_state.buttonValue = ""


if "ipAddress" not in st.session_state:
    st.session_state.ipAddress = st.context.headers.get("x-forwarded-for")

if "chatHistory" not in st.session_state:
    st.session_state.chatHistory = []

if "messages" not in st.session_state:
    st.session_state.messages = []

if "buttonValue" not in st.session_state:
    __resetButtonState()

st.session_state.toolResponseDisplay = {}

U.pprint("\n")
U.pprint("\n")

U.applyCommonStyles()
st.title("Mini Perplexity 💡")


for chat in st.session_state.chatHistory:
    role = chat["role"]
    content = chat["content"]
    imagePath = chat.get("image")
    toolResponseDisplay = chat.get("toolResponseDisplay")
    avatar = C.AI_ICON if role == "assistant" else C.USER_ICON
    with st.chat_message(role, avatar=avatar):
        st.markdown(content)
        if toolResponseDisplay:
            __showToolResponse(toolResponseDisplay)

        if imagePath:
            st.image(imagePath)

# U.pprint(f"{st.session_state.buttonValue=}")
# U.pprint(f"{st.session_state.selectedStory=}")
# U.pprint(f"{st.session_state.startMsg=}")

if prompt := (
    st.chat_input("Ask anything ...")
    or st.session_state["buttonValue"]
):
    __resetButtonState()

    with st.chat_message("user", avatar=C.USER_ICON):
        st.markdown(prompt)
    U.pprint(f"{prompt=}")
    st.session_state.chatHistory.append({"role": "user", "content": prompt })
    st.session_state.messages.append({"role": "user", "content": prompt})

    with st.chat_message("assistant", avatar=C.AI_ICON):
        responseContainer = st.empty()

        def __printAndGetResponse():
            response = ""
            responseContainer.image(C.TEXT_LOADER)
            responseGenerator = predict()

            for chunk in responseGenerator:
                response += chunk
                if __isInvalidResponse(response):
                    U.pprint(f"InvalidResponse={response}")
                    return

                if C.JSON_SEPARATOR not in response:
                    responseContainer.markdown(response)

            return response

        response = __printAndGetResponse()
        while not response:
            U.pprint("Empty response. Retrying..")
            time.sleep(0.7)
            response = __printAndGetResponse()

        U.pprint(f"{response=}")

        def selectButton(optionLabel):
            st.session_state["buttonValue"] = optionLabel
            U.pprint(f"Selected: {optionLabel}")

        rawResponse = response
        responseParts = response.split(C.JSON_SEPARATOR)

        jsonStr = None
        if len(responseParts) > 1:
            [response, jsonStr] = responseParts

        imagePath = None
        # imageContainer = st.empty()
        # try:
        #     (imagePrompt, loaderText) = __getImagePromptDetails(prompt, response)
        #     if imagePrompt:
        #         imgContainer = imageContainer.container()
        #         imgContainer.write(
        #             f"""
        #             <div class='blinking code'>
        #             {loaderText}
        #             </div>
        #             """,
        #             unsafe_allow_html=True
        #         )
        #         # imgContainer.markdown(f"`{loaderText}`")
        #         imgContainer.image(C.IMAGE_LOADER)
        #         (imagePath, seed) = __generateImage(imagePrompt)
        #         imageContainer.image(imagePath)
        # except Exception as e:
        #     U.pprint(e)
        #     imageContainer.empty()

        toolResponseDisplay = st.session_state.toolResponseDisplay
        st.session_state.chatHistory.append({
            "role": "assistant",
            "content": response,
            "image": imagePath,
            "toolResponseDisplay": toolResponseDisplay
        })
        st.session_state.messages.append({
            "role": "assistant",
            "content": rawResponse,
        })

        if jsonStr:
            try:
                json.loads(jsonStr)
                jsonObj = json.loads(jsonStr)
                questions = jsonObj.get("questions")
                action = jsonObj.get("action")

                if questions:
                    for option in questions:
                        st.button(
                            option["label"],
                            key=option["id"],
                            on_click=lambda label=option["label"]: selectButton(label)
                        )
                elif action:
                    pass
            except Exception as e:
                U.pprint(e)

# if st.button("Rerun"):
#     # __resetButtonState()
#     st.session_state.chatHistory = []
#     st.session_state.messages = []
#     st.rerun()