import gradio as gr import os import yaml import tempfile import huggingface_hub import subprocess HF_TKN = os.environ.get("GATED_HF_TOKEN") huggingface_hub.login(token=HF_TKN) huggingface_hub.hf_hub_download( repo_id='yzd-v/DWPose', filename='yolox_l.onnx', local_dir='./models/DWPose', local_dir_use_symlinks=False, ) huggingface_hub.hf_hub_download( repo_id='yzd-v/DWPose', filename='dw-ll_ucoco_384.onnx', local_dir='./models/DWPose', local_dir_use_symlinks=False, ) huggingface_hub.hf_hub_download( repo_id='ixaac/MimicMotion', filename='MimicMotion_1-1.pth', local_dir='./models', local_dir_use_symlinks=False, ) def print_directory_contents(path): for root, dirs, files in os.walk(path): level = root.replace(path, '').count(os.sep) indent = ' ' * 4 * (level) print(f"{indent}{os.path.basename(root)}/") subindent = ' ' * 4 * (level + 1) for f in files: print(f"{subindent}{f}") # Path to the directory you want to print directory_path = './models' # Print the directory contents print_directory_contents(directory_path) def infer(ref_video_in, ref_image_in): # Create a temporary directory with tempfile.TemporaryDirectory() as temp_dir: print("Temporary directory created:", temp_dir) # Define the values for the variables ref_video_path = ref_video_in ref_image_path = ref_image_in num_frames = 72 resolution = 576 frames_overlap = 6 num_inference_steps = 25 noise_aug_strength = 0 guidance_scale = 2.0 sample_stride = 2 fps = 15 seed = 42 # Create the data structure data = { 'base_model_path': 'stabilityai/stable-video-diffusion-img2vid-xt-1-1', 'ckpt_path': 'models/MimicMotion_1-1.pth', 'test_case': [ { 'ref_video_path': ref_video_path, 'ref_image_path': ref_image_path, 'num_frames': num_frames, 'resolution': resolution, 'frames_overlap': frames_overlap, 'num_inference_steps': num_inference_steps, 'noise_aug_strength': noise_aug_strength, 'guidance_scale': guidance_scale, 'sample_stride': sample_stride, 'fps': fps, 'seed': seed } ] } # Define the file path file_path = os.path.join(temp_dir, 'config.yaml') # Write the data to a YAML file with open(file_path, 'w') as file: yaml.dump(data, file, default_flow_style=False) print("YAML file 'config.yaml' created successfully in", file_path) # Execute the inference command command = ['python', 'inference.py', '--inference_config', file_path] result = subprocess.run(command, capture_output=True, text=True) # Print the command output print("Command output:", result.stdout) print("Command errors:", result.stderr) return "done" demo = gr.Interface( fn = infer, inputs = [gr.Video(), gr.Image(type="filepath")], outputs = [gr.Textbox()] ) demo.launch()