flash-diffusion / app.py
clementchadebec's picture
Update app.py
53f954d verified
raw
history blame
4.3 kB
import gradio as gr
import numpy as np
import random
from diffusers import PixArtAlphaPipeline, Transformer2DModel, LCMScheduler
import torch
from peft import PeftModel
device = "cuda" if torch.cuda.is_available() else "cpu"
transformer = Transformer2DModel.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS",
subfolder="transformer",
torch_dtype=torch.float16
)
transformer = PeftModel.from_pretrained(
transformer,
"jasperai/flash-pixart"
)
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = PixArtAlphaPipeline.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS",
transformer=transformer,
torch_dtype=torch.float16
)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
else:
pipe = PixArtAlphaPipeline.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS",
transformer=transformer,
torch_dtype=torch.float16
)
pipe = pipe.to(device)
pipe.text_encoder.to_bettertransformer()
pipe.scheduler = LCMScheduler.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS",
subfolder="scheduler",
timestep_spacing="trailing",
)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
NUM_INFERENCE_STEPS = 4
def infer(prompt, seed, randomize_seed):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt = prompt,
guidance_scale = 0,
num_inference_steps = NUM_INFERENCE_STEPS,
generator = generator
).images[0]
return image
examples = [
"The image showcases a freshly baked bread, possibly focaccia, with rosemary sprigs and red pepper flakes sprinkled on top. It's sliced and placed on a wire cooling rack, with a bowl of mixed peppercorns beside it.",
"A raccoon reading a book in a lush forest.",
"A small cactus with a happy face in the Sahara desert.",
"A super-realistic close-up of a snake eye",
"A yellow orchid trapped inside an empty bottle of wine",
"Pirate ship sailing on a sea with the milky way galaxy in the sky and purple glow lights",
"a cute fluffy rabbit pilot walking on a military aircraft carrier, 8k, cinematic",
"A close up of an old elderly man with green eyes looking straight at the camera",
"A beautiful sunflower in rainy day",
]
css="""
#col-container {
margin: 0 auto;
max-width: 512px;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# ⚡ FlashDiffusion: FlashPixart ⚡
This is an interactive demo of [Flash Diffusion](https://huggingface.co/jasperai/flash-pixart), a diffusion distillation method proposed in [ADD ARXIV]() *by Clément Chadebec, Onur Tasar and Benjamin Aubin.*
This model is a **66.5M** LoRA distilled version of [Pixart-α](https://huggingface.co/PixArt-alpha/PixArt-XL-2-1024-MS) model that is able to generate 1024x1024 images in **4 steps**.
Currently running on {power_device}.
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
gr.Examples(
examples = examples,
inputs = [prompt]
)
run_button.click(
fn = infer,
inputs = [prompt, seed, randomize_seed],
outputs = [result]
)
seed.change(
fn = infer,
inputs = [prompt, seed, randomize_seed],
outputs = [result]
)
demo.queue().launch()