File size: 31,193 Bytes
13db828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e60fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13db828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e60fd4
 
 
 
 
 
 
13db828
 
 
2e60fd4
 
 
 
 
 
 
 
 
 
 
 
13db828
2e60fd4
 
13db828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e60fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13db828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e60fd4
13db828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b37778c
13db828
b37778c
2e60fd4
13db828
 
 
 
 
 
 
cb9def6
 
13db828
cb9def6
13db828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5286ae0
13db828
 
 
 
 
 
5286ae0
13db828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f27e32
 
 
 
 
 
13db828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f27e32
13db828
 
 
 
 
2f27e32
13db828
 
2f27e32
13db828
 
2f27e32
13db828
 
 
cb9def6
2e60fd4
13db828
2f27e32
13db828
 
2f27e32
cb9def6
13db828
 
 
cb9def6
13db828
 
 
 
 
 
 
 
 
 
 
 
2e60fd4
 
13db828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09fd33b
13db828
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
import spaces
import random
import argparse
import glob
import json
import os
import time
from concurrent.futures import ThreadPoolExecutor

import gradio as gr
import numpy as np
import onnxruntime as rt
import tqdm
from huggingface_hub import hf_hub_download

import MIDI
from midi_synthesizer import MidiSynthesizer
from midi_tokenizer import MIDITokenizer

MAX_SEED = np.iinfo(np.int32).max
in_space = os.getenv("SYSTEM") == "spaces"


def softmax(x, axis):
    x_max = np.amax(x, axis=axis, keepdims=True)
    exp_x_shifted = np.exp(x - x_max)
    return exp_x_shifted / np.sum(exp_x_shifted, axis=axis, keepdims=True)


def sample_top_p_k(probs, p, k, generator=None):
    if generator is None:
        generator = np.random
    probs_idx = np.argsort(-probs, axis=-1)
    probs_sort = np.take_along_axis(probs, probs_idx, -1)
    probs_sum = np.cumsum(probs_sort, axis=-1)
    mask = probs_sum - probs_sort > p
    probs_sort[mask] = 0.0
    mask = np.zeros(probs_sort.shape[-1])
    mask[:k] = 1
    probs_sort = probs_sort * mask
    probs_sort /= np.sum(probs_sort, axis=-1, keepdims=True)
    shape = probs_sort.shape
    probs_sort_flat = probs_sort.reshape(-1, shape[-1])
    probs_idx_flat = probs_idx.reshape(-1, shape[-1])
    next_token = np.stack([generator.choice(idxs, p=pvals) for pvals, idxs in zip(probs_sort_flat, probs_idx_flat)])
    next_token = next_token.reshape(*shape[:-1])
    return next_token


def apply_io_binding(model: rt.InferenceSession, inputs, outputs, batch_size, past_len, cur_len):
    io_binding = model.io_binding()
    for input_ in  model.get_inputs():
        name = input_.name
        if name.startswith("past_key_values"):
            present_name = name.replace("past_key_values", "present")
            if present_name in outputs:
                v = outputs[present_name]
            else:
                v = rt.OrtValue.ortvalue_from_shape_and_type(
                    (batch_size, input_.shape[1], past_len, input_.shape[3]),
                    element_type=np.float32,
                    device_type=device)
            inputs[name] = v
        else:
            v = inputs[name]
        io_binding.bind_ortvalue_input(name, v)

    for output in model.get_outputs():
        name = output.name
        if name.startswith("present"):
            v = rt.OrtValue.ortvalue_from_shape_and_type(
                (batch_size, output.shape[1], cur_len, output.shape[3]),
                element_type=np.float32,
                device_type=device)
            outputs[name] = v
        else:
            v = outputs[name]
        io_binding.bind_ortvalue_output(name, v)
    return io_binding

def generate(model, prompt=None, batch_size=1, max_len=512, temp=1.0, top_p=0.98, top_k=20,
             disable_patch_change=False, disable_control_change=False, disable_channels=None, generator=None):
    tokenizer = model[2]
    if disable_channels is not None:
        disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels]
    else:
        disable_channels = []
    if generator is None:
        generator = np.random
    max_token_seq = tokenizer.max_token_seq
    if prompt is None:
        input_tensor = np.full((1, max_token_seq), tokenizer.pad_id, dtype=np.int64)
        input_tensor[0, 0] = tokenizer.bos_id  # bos
        input_tensor = input_tensor[None, :, :]
        input_tensor = np.repeat(input_tensor, repeats=batch_size, axis=0)
    else:
        if len(prompt.shape) == 2:
            prompt = prompt[None, :]
            prompt = np.repeat(prompt, repeats=batch_size, axis=0)
        elif prompt.shape[0] == 1:
            prompt = np.repeat(prompt, repeats=batch_size, axis=0)
        elif len(prompt.shape) != 3 or prompt.shape[0] != batch_size:
            raise ValueError(f"invalid shape for prompt, {prompt.shape}")
        prompt = prompt[..., :max_token_seq]
        if prompt.shape[-1] < max_token_seq:
            prompt = np.pad(prompt, ((0, 0), (0, 0), (0, max_token_seq - prompt.shape[-1])),
                            mode="constant", constant_values=tokenizer.pad_id)
        input_tensor = prompt
    cur_len = input_tensor.shape[1]
    bar = tqdm.tqdm(desc="generating", total=max_len - cur_len)
    model0_inputs = {}
    model0_outputs = {}
    emb_size = 1024
    for output in model[0].get_outputs():
        if output.name == "hidden":
            emb_size = output.shape[2]
    past_len = 0
    with bar:
        while cur_len < max_len:
            end = [False] * batch_size
            model0_inputs["x"] = rt.OrtValue.ortvalue_from_numpy(input_tensor[:, past_len:], device_type=device)
            model0_outputs["hidden"] = rt.OrtValue.ortvalue_from_shape_and_type(
                (batch_size, cur_len - past_len, emb_size),
                element_type=np.float32,
                device_type=device)
            io_binding = apply_io_binding(model[0], model0_inputs, model0_outputs, batch_size, past_len, cur_len)
            io_binding.synchronize_inputs()
            model[0].run_with_iobinding(io_binding)
            io_binding.synchronize_outputs()

            hidden = model0_outputs["hidden"].numpy()[:, -1:]
            next_token_seq = np.zeros((batch_size, 0), dtype=np.int64)
            event_names = [""] * batch_size
            model1_inputs = {"hidden": rt.OrtValue.ortvalue_from_numpy(hidden, device_type=device)}
            model1_outputs = {}
            for i in range(max_token_seq):
                mask = np.zeros((batch_size, tokenizer.vocab_size), dtype=np.int64)
                for b in range(batch_size):
                    if end[b]:
                        mask[b, tokenizer.pad_id] = 1
                        continue
                    if i == 0:
                        mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id]
                        if disable_patch_change:
                            mask_ids.remove(tokenizer.event_ids["patch_change"])
                        if disable_control_change:
                            mask_ids.remove(tokenizer.event_ids["control_change"])
                        mask[b, mask_ids] = 1
                    else:
                        param_names = tokenizer.events[event_names[b]]
                        if i > len(param_names):
                            mask[b, tokenizer.pad_id] = 1
                            continue
                        param_name = param_names[i - 1]
                        mask_ids = tokenizer.parameter_ids[param_name]
                        if param_name == "channel":
                            mask_ids = [i for i in mask_ids if i not in disable_channels]
                        mask[b, mask_ids] = 1
                mask = mask[:, None, :]
                x = next_token_seq
                if i != 0:
                    # cached
                    if i == 1:
                        hidden = np.zeros((batch_size, 0, emb_size), dtype=np.float32)
                        model1_inputs["hidden"] = rt.OrtValue.ortvalue_from_numpy(hidden, device_type=device)
                    x = x[:, -1:]
                model1_inputs["x"] = rt.OrtValue.ortvalue_from_numpy(x, device_type=device)
                model1_outputs["y"] = rt.OrtValue.ortvalue_from_shape_and_type(
                    (batch_size, 1, tokenizer.vocab_size),
                    element_type=np.float32,
                    device_type=device
                )
                io_binding = apply_io_binding(model[1], model1_inputs, model1_outputs, batch_size, i, i+1)
                io_binding.synchronize_inputs()
                model[1].run_with_iobinding(io_binding)
                io_binding.synchronize_outputs()
                logits = model1_outputs["y"].numpy()
                scores = softmax(logits / temp, -1) * mask
                samples = sample_top_p_k(scores, top_p, top_k, generator)
                if i == 0:
                    next_token_seq = samples
                    for b in range(batch_size):
                        if end[b]:
                            continue
                        eid = samples[b].item()
                        if eid == tokenizer.eos_id:
                            end[b] = True
                        else:
                            event_names[b] = tokenizer.id_events[eid]
                else:
                    next_token_seq = np.concatenate([next_token_seq, samples], axis=1)
                    if all([len(tokenizer.events[event_names[b]]) == i for b in range(batch_size) if not end[b]]):
                        break
            if next_token_seq.shape[1] < max_token_seq:
                next_token_seq = np.pad(next_token_seq,
                                        ((0, 0), (0, max_token_seq - next_token_seq.shape[-1])),
                                        mode="constant", constant_values=tokenizer.pad_id)
            next_token_seq = next_token_seq[:, None, :]
            input_tensor = np.concatenate([input_tensor, next_token_seq], axis=1)
            past_len = cur_len
            cur_len += 1
            bar.update(1)
            yield next_token_seq[:, 0]
            if all(end):
                break


def create_msg(name, data):
    return {"name": name, "data": data}


def send_msgs(msgs):
    return json.dumps(msgs)


def get_duration(model_name, tab, mid_seq, continuation_state, continuation_select, instruments, drum_kit, bpm,
                 time_sig, key_sig, mid, midi_events, reduce_cc_st, remap_track_channel, add_default_instr,
                 remove_empty_channels, seed, seed_rand, gen_events, temp, top_p, top_k, allow_cc):
    t = gen_events // 30
    if "large" in model_name:
        t = gen_events // 23
    return t + 5


@spaces.GPU(duration=get_duration)
def run(model_name, tab, mid_seq, continuation_state, continuation_select, instruments, drum_kit, bpm, time_sig,
        key_sig, mid, midi_events, reduce_cc_st, remap_track_channel, add_default_instr, remove_empty_channels,
        seed, seed_rand, gen_events, temp, top_p, top_k, allow_cc):
    model = models[model_name]
    model_base = rt.InferenceSession(model[0], providers=providers)
    model_token = rt.InferenceSession(model[1], providers=providers)
    tokenizer = model[2]
    model = [model_base, model_token, tokenizer]
    bpm = int(bpm)
    if time_sig == "auto":
        time_sig = None
        time_sig_nn = 4
        time_sig_dd = 2
    else:
        time_sig_nn, time_sig_dd = time_sig.split('/')
        time_sig_nn = int(time_sig_nn)
        time_sig_dd = {2: 1, 4: 2, 8: 3}[int(time_sig_dd)]
    if key_sig == 0:
        key_sig = None
        key_sig_sf = 0
        key_sig_mi = 0
    else:
        key_sig = (key_sig - 1)
        key_sig_sf = key_sig // 2 - 7
        key_sig_mi = key_sig % 2
    gen_events = int(gen_events)
    max_len = gen_events
    if seed_rand:
        seed = random.randint(0, MAX_SEED)
    generator = np.random.RandomState(seed)
    disable_patch_change = False
    disable_channels = None
    if tab == 0:
        i = 0
        mid = [[tokenizer.bos_id] + [tokenizer.pad_id] * (tokenizer.max_token_seq - 1)]
        if tokenizer.version == "v2":
            if time_sig is not None:
                mid.append(tokenizer.event2tokens(["time_signature", 0, 0, 0, time_sig_nn - 1, time_sig_dd - 1]))
            if key_sig is not None:
                mid.append(tokenizer.event2tokens(["key_signature", 0, 0, 0, key_sig_sf + 7, key_sig_mi]))
        if bpm != 0:
            mid.append(tokenizer.event2tokens(["set_tempo", 0, 0, 0, bpm]))
        patches = {}
        if instruments is None:
            instruments = []
        for instr in instruments:
            patches[i] = patch2number[instr]
            i = (i + 1) if i != 8 else 10
        if drum_kit != "None":
            patches[9] = drum_kits2number[drum_kit]
        for i, (c, p) in enumerate(patches.items()):
            mid.append(tokenizer.event2tokens(["patch_change", 0, 0, i + 1, c, p]))
        mid = np.asarray([mid] * OUTPUT_BATCH_SIZE, dtype=np.int64)
        mid_seq = mid.tolist()
        if len(instruments) > 0:
            disable_patch_change = True
            disable_channels = [i for i in range(16) if i not in patches]
    elif tab == 1 and mid is not None:
        eps = 4 if reduce_cc_st else 0
        mid = tokenizer.tokenize(MIDI.midi2score(mid), cc_eps=eps, tempo_eps=eps,
                                 remap_track_channel=remap_track_channel,
                                 add_default_instr=add_default_instr,
                                 remove_empty_channels=remove_empty_channels)
        mid = mid[:int(midi_events)]
        mid = np.asarray([mid] * OUTPUT_BATCH_SIZE, dtype=np.int64)
        mid_seq = mid.tolist()
    elif tab == 2 and mid_seq is not None:
        mid = np.asarray(mid_seq, dtype=np.int64)
        if continuation_select > 0:
            continuation_state.append(mid_seq)
            mid = np.repeat(mid[continuation_select - 1:continuation_select], repeats=OUTPUT_BATCH_SIZE, axis=0)
            mid_seq = mid.tolist()
        else:
            continuation_state.append(mid.shape[1])
    else:
        continuation_state = [0]
        mid = [[tokenizer.bos_id] + [tokenizer.pad_id] * (tokenizer.max_token_seq - 1)]
        mid = np.asarray([mid] * OUTPUT_BATCH_SIZE, dtype=np.int64)
        mid_seq = mid.tolist()

    if mid is not None:
        max_len += mid.shape[1]

    init_msgs = [create_msg("progress", [0, gen_events])]
    if not (tab == 2 and continuation_select == 0):
        for i in range(OUTPUT_BATCH_SIZE):
            events = [tokenizer.tokens2event(tokens) for tokens in mid_seq[i]]
            init_msgs += [create_msg("visualizer_clear", [i, tokenizer.version]),
                          create_msg("visualizer_append", [i, events])]
    yield mid_seq, continuation_state, seed, send_msgs(init_msgs)
    midi_generator = generate(model, mid, batch_size=OUTPUT_BATCH_SIZE, max_len=max_len, temp=temp,
                              top_p=top_p, top_k=top_k, disable_patch_change=disable_patch_change,
                              disable_control_change=not allow_cc, disable_channels=disable_channels,
                              generator=generator)
    events = [list() for i in range(OUTPUT_BATCH_SIZE)]
    t = time.time() + 1
    for i, token_seqs in enumerate(midi_generator):
        token_seqs = token_seqs.tolist()
        for j in range(OUTPUT_BATCH_SIZE):
            token_seq = token_seqs[j]
            mid_seq[j].append(token_seq)
            events[j].append(tokenizer.tokens2event(token_seq))
        if time.time() - t > 0.5:
            msgs = [create_msg("progress", [i + 1, gen_events])]
            for j in range(OUTPUT_BATCH_SIZE):
                msgs += [create_msg("visualizer_append", [j, events[j]])]
                events[j] = list()
            yield mid_seq, continuation_state, seed, send_msgs(msgs)
            t = time.time()
    yield mid_seq, continuation_state, seed, send_msgs([])


def finish_run(model_name, mid_seq):
    if mid_seq is None:
        outputs = [None] * OUTPUT_BATCH_SIZE
        return *outputs, []
    tokenizer = models[model_name][2]
    outputs = []
    end_msgs = [create_msg("progress", [0, 0])]
    if not os.path.exists("outputs"):
        os.mkdir("outputs")
    for i in range(OUTPUT_BATCH_SIZE):
        events = [tokenizer.tokens2event(tokens) for tokens in mid_seq[i]]
        mid = tokenizer.detokenize(mid_seq[i])
        with open(f"outputs/output{i + 1}.mid", 'wb') as f:
            f.write(MIDI.score2midi(mid))
        outputs.append(f"outputs/output{i + 1}.mid")
        end_msgs += [create_msg("visualizer_clear", [i, tokenizer.version]),
                     create_msg("visualizer_append", [i, events]),
                     create_msg("visualizer_end", i)]
    return *outputs, send_msgs(end_msgs)


def synthesis_task(mid):
    return synthesizer.synthesis(MIDI.score2opus(mid))

def render_audio(model_name, mid_seq, should_render_audio):
    if (not should_render_audio) or mid_seq is None:
        outputs = [None] * OUTPUT_BATCH_SIZE
        return tuple(outputs)
    tokenizer = models[model_name][2]
    outputs = []
    if not os.path.exists("outputs"):
        os.mkdir("outputs")
    audio_futures = []
    for i in range(OUTPUT_BATCH_SIZE):
        mid = tokenizer.detokenize(mid_seq[i])
        audio_future = thread_pool.submit(synthesis_task, mid)
        audio_futures.append(audio_future)
    for future in audio_futures:
        outputs.append((44100, future.result()))
    if OUTPUT_BATCH_SIZE == 1:
        return outputs[0]
    return tuple(outputs)


def undo_continuation(model_name, mid_seq, continuation_state):
    if mid_seq is None or len(continuation_state) < 2:
        return mid_seq, continuation_state, send_msgs([])
    tokenizer = models[model_name][2]
    if isinstance(continuation_state[-1], list):
        mid_seq = continuation_state[-1]
    else:
        mid_seq = [ms[:continuation_state[-1]] for ms in mid_seq]
    continuation_state = continuation_state[:-1]
    end_msgs = [create_msg("progress", [0, 0])]
    for i in range(OUTPUT_BATCH_SIZE):
        events = [tokenizer.tokens2event(tokens) for tokens in mid_seq[i]]
        end_msgs += [create_msg("visualizer_clear", [i, tokenizer.version]),
                     create_msg("visualizer_append", [i, events]),
                     create_msg("visualizer_end", i)]
    return mid_seq, continuation_state, send_msgs(end_msgs)


def load_javascript(dir="javascript"):
    scripts_list = glob.glob(f"{dir}/*.js")
    javascript = ""
    for path in scripts_list:
        with open(path, "r", encoding="utf8") as jsfile:
            js_content = jsfile.read()
            js_content = js_content.replace("const MIDI_OUTPUT_BATCH_SIZE=4;",
                                            f"const MIDI_OUTPUT_BATCH_SIZE={OUTPUT_BATCH_SIZE};")
            javascript += f"\n<!-- {path} --><script>{js_content}</script>"
    template_response_ori = gr.routes.templates.TemplateResponse

    def template_response(*args, **kwargs):
        res = template_response_ori(*args, **kwargs)
        res.body = res.body.replace(
            b'</head>', f'{javascript}</head>'.encode("utf8"))
        res.init_headers()
        return res

    gr.routes.templates.TemplateResponse = template_response


def hf_hub_download_retry(repo_id, filename):
    print(f"downloading {repo_id} {filename}")
    retry = 0
    err = None
    while retry < 30:
        try:
            return hf_hub_download(repo_id=repo_id, filename=filename)
        except Exception as e:
            err = e
            retry += 1
    if err:
        raise err


def get_tokenizer(repo_id):
    config_path = hf_hub_download_retry(repo_id=repo_id, filename=f"config.json")
    with open(config_path, "r") as f:
        config = json.load(f)
    tokenizer = MIDITokenizer(config["tokenizer"]["version"])
    tokenizer.set_optimise_midi(config["tokenizer"]["optimise_midi"])
    return tokenizer


number2drum_kits = {-1: "None", 0: "Standard", 8: "Room", 16: "Power", 24: "Electric", 25: "TR-808", 32: "Jazz",
                    40: "Blush", 48: "Orchestra"}
patch2number = {v: k for k, v in MIDI.Number2patch.items()}
drum_kits2number = {v: k for k, v in number2drum_kits.items()}
key_signatures = ['C♭', 'A♭m', 'G♭', 'E♭m', 'D♭', 'B♭m', 'A♭', 'Fm', 'E♭', 'Cm', 'B♭', 'Gm', 'F', 'Dm',
                  'C', 'Am', 'G', 'Em', 'D', 'Bm', 'A', 'F♯m', 'E', 'C♯m', 'B', 'G♯m', 'F♯', 'D♯m', 'C♯', 'A♯m']

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
    parser.add_argument("--port", type=int, default=7860, help="gradio server port")
    parser.add_argument("--device", type=str, default="cuda", help="device to run model")
    parser.add_argument("--batch", type=int, default=8, help="batch size")
    parser.add_argument("--max-gen", type=int, default=1024, help="max")
    opt = parser.parse_args()
    OUTPUT_BATCH_SIZE = opt.batch
    soundfont_path = hf_hub_download_retry(repo_id="skytnt/midi-model", filename="soundfont.sf2")
    thread_pool = ThreadPoolExecutor(max_workers=OUTPUT_BATCH_SIZE)
    synthesizer = MidiSynthesizer(soundfont_path)
    models_info = {
        "generic pretrain model (tv2o-medium) by skytnt": [
            "skytnt/midi-model-tv2o-medium", "", {
                "jpop": "skytnt/midi-model-tv2om-jpop-lora",
                "touhou": "skytnt/midi-model-tv2om-touhou-lora"
            }
        ],
        "generic pretrain model (tv2o-large) by asigalov61": [
            "asigalov61/Music-Llama", "", {}
        ],
        "generic pretrain model (tv2o-medium) by asigalov61": [
            "asigalov61/Music-Llama-Medium", "", {}
        ],
        "generic pretrain model (tv1-medium) by skytnt": [
            "skytnt/midi-model", "", {}
        ]
    }
    models = {}
    providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
    device = "cuda"

    for name, (repo_id, path, loras) in models_info.items():
        model_base_path = hf_hub_download_retry(repo_id=repo_id, filename=f"{path}onnx/model_base.onnx")
        model_token_path = hf_hub_download_retry(repo_id=repo_id, filename=f"{path}onnx/model_token.onnx")
        tokenizer = get_tokenizer(repo_id)
        models[name] = [model_base_path, model_token_path, tokenizer]
        for lora_name, lora_repo in loras.items():
            model_base_path = hf_hub_download_retry(repo_id=lora_repo, filename=f"onnx/model_base.onnx")
            model_token_path = hf_hub_download_retry(repo_id=lora_repo, filename=f"onnx/model_token.onnx")
            models[f"{name} with {lora_name} lora"] = [model_base_path, model_token_path, tokenizer]

    load_javascript()
    app = gr.Blocks()
    with app:
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Midi Composer</h1>")
        gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=skytnt.midi-composer&style=flat)\n\n"
                    "Midi event transformer for symbolic music generation\n\n"
                    "Demo for [SkyTNT/midi-model](https://github.com/SkyTNT/midi-model)\n\n"
                    "[Open In Colab]"
                    "(https://colab.research.google.com/github/SkyTNT/midi-model/blob/main/demo.ipynb)"
                    " or [download windows app](https://github.com/SkyTNT/midi-model/releases)"
                    " for unlimited generation\n\n"
                    "**Update v1.3**: MIDITokenizerV2 and new MidiVisualizer\n\n"
                    "The current **best** model: generic pretrain model (tv2o-medium) by skytnt"
                    )
        js_msg = gr.Textbox(elem_id="msg_receiver", visible=False)
        js_msg.change(None, [js_msg], [], js="""
        (msg_json) =>{
            let msgs = JSON.parse(msg_json);
            executeCallbacks(msgReceiveCallbacks, msgs);
            return [];
        }
        """)
        input_model = gr.Dropdown(label="select model", choices=list(models.keys()),
                                  type="value", value=list(models.keys())[0])
        tab_select = gr.State(value=0)
        with gr.Tabs():
            with gr.TabItem("custom prompt") as tab1:
                input_instruments = gr.Dropdown(label="🪗instruments (auto if empty)", choices=list(patch2number.keys()),
                                                multiselect=True, max_choices=15, type="value")
                input_drum_kit = gr.Dropdown(label="🥁drum kit", choices=list(drum_kits2number.keys()), type="value",
                                             value="None")
                input_bpm = gr.Slider(label="BPM (beats per minute, auto if 0)", minimum=0, maximum=255,
                                      step=1,
                                      value=0)
                input_time_sig = gr.Radio(label="time signature (only for tv2 models)",
                                          value="auto",
                                          choices=["auto", "4/4", "2/4", "3/4", "6/4", "7/4",
                                                   "2/2", "3/2", "4/2", "3/8", "5/8", "6/8", "7/8", "9/8", "12/8"]
                                          )
                input_key_sig = gr.Radio(label="key signature (only for tv2 models)",
                                         value="auto",
                                         choices=["auto"] + key_signatures,
                                         type="index"
                                         )
                example1 = gr.Examples([
                    [[], "None"],
                    [["Acoustic Grand"], "None"],
                    [['Acoustic Grand', 'SynthStrings 2', 'SynthStrings 1', 'Pizzicato Strings',
                      'Pad 2 (warm)', 'Tremolo Strings', 'String Ensemble 1'], "Orchestra"],
                    [['Trumpet', 'Oboe', 'Trombone', 'String Ensemble 1', 'Clarinet',
                      'French Horn', 'Pad 4 (choir)', 'Bassoon', 'Flute'], "None"],
                    [['Flute', 'French Horn', 'Clarinet', 'String Ensemble 2', 'English Horn', 'Bassoon',
                      'Oboe', 'Pizzicato Strings'], "Orchestra"],
                    [['Electric Piano 2', 'Lead 5 (charang)', 'Electric Bass(pick)', 'Lead 2 (sawtooth)',
                      'Pad 1 (new age)', 'Orchestra Hit', 'Cello', 'Electric Guitar(clean)'], "Standard"],
                    [["Electric Guitar(clean)", "Electric Guitar(muted)", "Overdriven Guitar", "Distortion Guitar",
                      "Electric Bass(finger)"], "Standard"]
                ], [input_instruments, input_drum_kit])
            with gr.TabItem("midi prompt") as tab2:
                input_midi = gr.File(label="input midi", file_types=[".midi", ".mid"], type="binary")
                input_midi_events = gr.Slider(label="use first n midi events as prompt", minimum=1, maximum=512,
                                              step=1,
                                              value=128)
                input_reduce_cc_st = gr.Checkbox(label="reduce control_change and set_tempo events", value=True)
                input_remap_track_channel = gr.Checkbox(
                    label="remap tracks and channels so each track has only one channel and in order", value=True)
                input_add_default_instr = gr.Checkbox(
                    label="add a default instrument to channels that don't have an instrument", value=True)
                input_remove_empty_channels = gr.Checkbox(label="remove channels without notes", value=False)
                example2 = gr.Examples([[file, 128] for file in glob.glob("example/*.mid")],
                                       [input_midi, input_midi_events])
            with gr.TabItem("last output prompt") as tab3:
                gr.Markdown("Continue generating on the last output.")
                input_continuation_select = gr.Radio(label="select output to continue generating", value="all",
                                                     choices=["all"] + [f"output{i + 1}" for i in
                                                                        range(OUTPUT_BATCH_SIZE)],
                                                     type="index"
                                                     )
                undo_btn = gr.Button("undo the last continuation")

        tab1.select(lambda: 0, None, tab_select, queue=False)
        tab2.select(lambda: 1, None, tab_select, queue=False)
        tab3.select(lambda: 2, None, tab_select, queue=False)
        input_seed = gr.Slider(label="seed", minimum=0, maximum=2 ** 31 - 1,
                               step=1, value=0)
        input_seed_rand = gr.Checkbox(label="random seed", value=True)
        input_gen_events = gr.Slider(label="generate max n midi events", minimum=1, maximum=opt.max_gen,
                                     step=1, value=opt.max_gen // 2)
        with gr.Accordion("options", open=False):
            input_temp = gr.Slider(label="temperature", minimum=0.1, maximum=1.2, step=0.01, value=1)
            input_top_p = gr.Slider(label="top p", minimum=0.1, maximum=1, step=0.01, value=0.95)
            input_top_k = gr.Slider(label="top k", minimum=1, maximum=128, step=1, value=20)
            input_allow_cc = gr.Checkbox(label="allow midi cc event", value=True)
            input_render_audio = gr.Checkbox(label="render audio after generation", value=True)
            example3 = gr.Examples([[1, 0.94, 128], [1, 0.98, 20], [1, 0.98, 12]],
                                   [input_temp, input_top_p, input_top_k])
        run_btn = gr.Button("generate", variant="primary")
        # stop_btn = gr.Button("stop and output")
        output_midi_seq = gr.State()
        output_continuation_state = gr.State([0])
        midi_outputs = []
        audio_outputs = []
        with gr.Tabs(elem_id="output_tabs"):
            for i in range(OUTPUT_BATCH_SIZE):
                with gr.TabItem(f"output {i + 1}") as tab1:
                    output_midi_visualizer = gr.HTML(elem_id=f"midi_visualizer_container_{i}")
                    output_audio = gr.Audio(label="output audio", format="mp3", elem_id=f"midi_audio_{i}")
                    output_midi = gr.File(label="output midi", file_types=[".mid"])
                    midi_outputs.append(output_midi)
                    audio_outputs.append(output_audio)
        run_event = run_btn.click(run, [input_model, tab_select, output_midi_seq, output_continuation_state,
                                        input_continuation_select, input_instruments, input_drum_kit, input_bpm,
                                        input_time_sig, input_key_sig, input_midi, input_midi_events,
                                        input_reduce_cc_st, input_remap_track_channel,
                                        input_add_default_instr, input_remove_empty_channels,
                                        input_seed, input_seed_rand, input_gen_events, input_temp, input_top_p,
                                        input_top_k, input_allow_cc],
                                  [output_midi_seq, output_continuation_state, input_seed, js_msg],
                                  concurrency_limit=10, queue=True)
        finish_run_event = run_event.then(fn=finish_run,
                                          inputs=[input_model, output_midi_seq],
                                          outputs=midi_outputs + [js_msg],
                                          queue=False)
        finish_run_event.then(fn=render_audio,
                              inputs=[input_model, output_midi_seq, input_render_audio],
                              outputs=audio_outputs,
                              queue=False)
        # stop_btn.click(None, [], [], cancels=run_event,
        #                queue=False)
        undo_btn.click(undo_continuation, [input_model, output_midi_seq, output_continuation_state],
                       [output_midi_seq, output_continuation_state, js_msg], queue=False)
    app.queue().launch(server_port=opt.port, share=opt.share, inbrowser=True, ssr_mode=False)
    thread_pool.shutdown()